A^2=O I是单位矩阵则 I-A的行列式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 19:01:15
因为A与B相似所以存在可逆矩阵P,满足P^-1AP=B所以与E-A相似的矩阵是:P^-1(E-A)P=P^-1EP-P^-1AP=E-B=-10-24
|A|E是矩阵的数乘一般情况:A=(aij),则kA=(kaij).即矩阵A中每个元素都乘k所以|A|E=|A|0...00|A|...0....00...|A|
显然x^2-3x+2是A的一个零化多项式,无重根,这说明A的极小多项式无重根,因此A可对角化.而A的特征值全为1,说明A相似于单位阵E.所以A=P^{-1}EP=E
A^3+A^2-2A=0A^2(A+I)-2A-2I=-2I(A^2-2I)(A+I)=-2I-1/2(A^2-2I)(A+I)=I所以A+I可逆逆阵是-1/2(A^2-2I)
楼上的想法不对吧,你只说明了矩阵A是一个对角矩阵,并且可能是单位阵的倍数,不能说明A是单位阵,要说明单位阵,除了说明:“正交矩阵表明A^(-1)=A',正定矩阵表明A合同于E,即A=C'EC,所以A^
充分性A^2=A0.25(B+I)^2=1/2(B+I)(B+I)^2=2(B+I)B^2+BI+IB+I=2B+2IB^2+2B+I=2B+2IB^2=I必要性若B^2=IA^2=0.25(B+I)
用初等变换把A化成单位矩阵,相当于在A的两边乘相应的初等矩阵设Ps...P1AQ1.Qt=E.则P=Ps...P1,D=Q1...Qt.
(A-E)²=2(A+E)²A²-2A+E=2A²+4A+2E整理得:A²+6A=-EA(A+6E)=-E所以A[-(A+6E)]=E故A^-1=-(
若要A+aE可逆,只需|A+aE|≠0,即a不是-A的特征值,亦即-a不是A的特征值.因此a≠-1,-2,3即可.观察选项,只有A+E可逆,选B.
|A|=3.由ABA*=2BA*+E等式两边右乘A得ABA*A=2BA*A+A.因为A*A=|A|E=3E所以3AB=6B+A所以(3A-6E)B=A所以B=(3A-6E)^-1A3A-6E=0303
A^2=2A说明A的特征值只可能是0或者2,所以A-I的特征值就是1或-1再利用实对称阵正交相似于对角阵得到A-I是正交阵另一种做法是直接算出(A-I)(A-I)^T=I,但上面的方法也应该掌握
要这样来理解把矩阵分为两类讨论,第一类是单位阵(这类显然),第二类不是单位阵(这类的目标是证明不可逆),在第二类中使用反证法.反证法的讲法存在一步逻辑跳跃,不过这步太显然了,不算是什么问题.
A(A-I)=0如果A≠I则A不可逆
|A+I|=|A+AA^T|=|A|*|I+A^T|=|A|*|I+A|=-|A+I|,其中倒数第二个等号是因为转置得行列式等于本身.移项得结果.
反证法:如果A不可逆,则存在非零列向量x使得Ax=0,于是x^TA^T=(Ax)^T=00不等于=x^T*x=x^T*I*x=x^T*(A^T+A)*x=x^TA^Tx+x^TAx=0*x+x^T*0
|2A*|=2^3|A*|=8|A|^(3-1)=8*2^2=32用到2个性质1.|kA|=k^n|A|2.|A*|=|A|^(n-1)
四阶方阵A相似于B,A的特征值为2,3,4,5所以B的特征值为2,3,4,5B-I的特征值为2-1,3-1,4-1,5-1,即为:1,2,3,4所以|B-I|=1×2×3×4=24再问:为什么B的特征
(A+4I)(A-2I)=-2I(A+4I)^-1=(A-2I)/(-2I)
用反证法.若A不奇异,那么A²=A可推知A(A-I)=0,即A-I=A^(-1)0=0,得A=i,矛盾!所以A奇异