A^k等于零矩阵,证明E-A可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/04 06:15:23
矩阵A^2=A,证明:(A+E)^k=E+(2^k-1)A (k∈N).

因为AE=EA,即A与E可交换所以由二项式公式有(A+E)^k=∑(0

n阶矩阵A,A^k=0,证E-A可逆,用特征值法证明.

先证A的特征值只有0;反证法:假设A有一个特征值t不等于0;那么,根据特征向量的定义,存在X不等于0,AX=tX;又A^K=0则0=(A^k)X=A^(k-1)(tX)=tA^(k-1)X=……=(t

证明题:设A为n阶矩阵,且A^2-A=2E.证明A可对角化.

这道题在不同的阶段可以有不同的方法.如果学了Jordan标准型和矩阵的最小多项式,可以用:矩阵可对角化的充要条件是其最小多项式无重根(即Jordan块都是1阶的).由A²-A=2E,知x&#

矩阵A的特征值都为正负一,且可相似对角化,证明A^2=E

看看能看懂不? 特征值都为正负1   对应相乘之后都是1 那个不影响结果~

n阶矩阵A满足A^m=O证明对任意实数k,E+kA为可逆矩阵

经济数学团队为你解答.再问:证明A特征值全为零和证明下一步E+kA特征值为1有什么关系吗?再答:有关系。若a是A的特征值,则1+ka是E+kA的特征值。

设n阶矩阵A满足A^2-3A+2E=0,证明A可相似对角化.

设a是A的特征值,则a^2-3a+2是A^2-3A+2E的特征值而A^2-3A+2E=0,零矩阵的特征值是0所以a^2-3a+2=0所以(a-1)(a-2)=0所以A的特征值是1或2.因为A^2-3A

设矩阵A满足A的平方=E,证明A+2E是可逆矩阵

由于(A+2E)(A-2E)=A^2-4E=-3E,所以(A+2E)(-A/3+2E/3)=E,因此A+2E可逆.

设矩阵A满足A^2=E.证明:A+2E是可逆矩阵.

设矩阵A满足A^2=E.===>(A+2E)(A-2E)=5E===>A+2E的逆矩阵为0.2(A-2E).

设A为n阶实矩阵,证明:若A^k=E,则A相似于对角阵

可以用稍微初等一点的技术在复数域上上三角化总是可以的,并且特征值的次序可以任意指定那么就先上三角化到diag{A1,A2,...,Am}+N,每一块Ai都恰有一个特征值,且不同的块对应不同的特征值,N

设A为n阶矩阵,且A不是零矩阵,且存在正整数k≥2,使A^k=0,证明:E-A可逆,且(E-A)=E+A+A^2+……A

由性质直接证明因为(E-A)(E+A+A^2+……+A^(k-1))=E+A+A^2+……+A^(k-1)-A-A^2-……-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-A)^(-1

设矩阵A的K次方等于0矩阵,如何证明E-A可逆,并求E-A的逆

(E--A)(E+A+A^2+A^3+...+A^(n--1))=E+A+A^2+A^3+...+A^(n--1)--A--A^2--A^3--.--A^n=E--A^n=E,因此E-A可逆,且(E-

证明:A乘以A的转置等于零,那么A一定为零矩阵

用最基本的方法:设A==(aij)m*n分块A==(A1,A2,...,An),Aj==(a1j,a2j,...,amj)(j==1,2,...n)则T(A)==T(T(A1),T(A2),...,T

已知n阶非零方阵A是奇异矩阵,证明A的转置伴随矩阵的行列式等于零

反证.若|A*|≠0则A*可逆再由AA*=|A|E=0得A=AA*(A*)^-1=0所以A*=0,这与|A*|≠0矛盾.故|A*|=0.

A是n阶矩阵,(A-aE)(A-bE)等于零矩阵,证明A可以对角化.

此题要求a不等于b,否则结论不对.由不等式r(A)+r(B)>=r(A+B),可得r(A-aE)+r(A-bE)>=r(bE-A+A-aE)=r((b-a)E)=n,另一方面还有不等式:若AB=0,则

设A,A-E都是n阶正定矩阵,证明E-A^-1为正定矩阵

正定的充分必要条件是所有特征值为正,故可如图证明.经济数学团队帮你解答,请及时采纳.谢谢!

n阶矩阵A满足A^m=O证明对任意实数k,E+kA为可逆矩阵.

因为A^m=O,即A为幂零矩阵,所以A的特征值只有0,从而对任意实数k,E+kA的特征值只能是1,|E+kA|等于其所有特征值的乘积,故不为0,所以E+kA为可逆矩阵.

线性代数问题设方阵A满足A的k次方幂等于零矩阵,k为正整数.证明I+A可逆,并求(I+A)的逆矩阵

因为(E+A)(E--A+A^2--A^3+.+(--1)^(k--1)A^(k--1))=E+(--1)^(k--1)A^k=E,第一个等号是你按照分配率乘开后发现中间的项全消掉了.因此E+A可逆,

正交矩阵的一个证明题a是n维实列向量,a不等于0,矩阵A=E-kaaT,k为非零常数,则A为正交矩阵的充分必要条件为k=

设b=aTa,注意aTa为一个数字.A为正交矩阵==>AAT=E而AAT=(E-kaaT)(E-kaaT)T注意到ET=E,(aaT)T=aaT=(E-kaaT)(E-kaaT)=E-2kaaT+k^

设矩阵A^k=0矩阵(k为正整数),证明(E-A)^(-1)=E+A+A^2+...+A^(k-1)

证明:因为A^k=0所以(E-A)(E+A+A^2+...+A^(k-1))=E+A+A^2+...+A^(k-1)-A-A^2-...-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-