a² b² c² d²=2500 (a 50)(b 50)=cd

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:49:21
如果(a+b)/b=(c+d)/d,那么a/b=c/d,为什么?

(a+b)/b=(c+d)/d(a+b)d=(c+d)bad+bd=cb+bdad=cba/b=c/d

求证(b,c,d)a+(c,a,d)b+(a,b,d)c+(b,a,c)d=0 a,b,c,d皆为向量>

你说的(b,c,d)是混合积,即先做叉乘,再做点乘混合积的性质是:三个向量轮换次序,混合积不变.比如(b,c,d)=(d,b,c)而其中两个向量交换次序,混合积变号,比如(b,c,d)=-(c,b,d

[a,b)×[c,d

这是笛卡尔乘积,得到的是一个矩形.再问:可以具体点么矩形坐标与abcd是什么关系?再答:x轴从a到b,y轴从c到d的矩形,四个顶点坐标为(a,c)、(b,c)、(a,d)、(b,d)

c语言d=!a&&!b||!a

d=!a&&!b||!c的意思是:d不等于a并且不等于b或者不等于ca

a=b=c=0,printf("%d,%d,%d,%d",a,b,c,a++ &&b++||c++)

从右向左运算;a++&&b++||c++后置++,先不管他,用原来abc的值计算逻辑值,a=0,0在前,&&逻辑与=0,就不用执行b++了,||c=0,逻辑或=0,所以第四个数=0,注意此时a,c都自

( )-(c-d)=(a-c)-(-b+d)

(a+b)-(c-d)=(a-c)-(-b+d)

实数a,b,c,d满足d>c;a+b=c+d;a+d

因为d>cg根据a+daa=d+c-b根据a+dd所以ad>c>a

a,b ,c ,d

举个例子a:b=c:da,d是外项.b,c是内项.所以a×d就是外向积,b×c就是内项积正比例:有两个相关联的量,一个量增大,另一个量也随着增大,且比值一定,这两个量叫做成正比例的量.(人教版11册数

若a/c=c/d,则证明(a-d)/(a+b)=(c-b)/(a+d),同一条件,再证明(a+c)/(a-c)=(b+d

第二题:原式化为:(a+c)(b-d)=(b+d)(a-c)→ab-ad+bc-cd=ab-bc+ad-cd→-ad+bc=-bc+ad→2bc=2ad→b/d=a/c我觉得除非你能证明b=c的话,这

a>b>c>d>0.a/b=c/d怎么证明a+d>c+b

思路:要证明a+d>c+b可证明a+d-(c+b)>0有因为a、b、c、d都大于零即可证明>0证明:因为a/b=c/d所以ad=bc又因为a>b>c>d>0所以(a+d)d-(c+b)d=ad+d2-

main()main() { float a,b,c,d; scanf("%d%d,&a&b"); c=a+b; d=a

scanf("%d%d,&a&b");改为scanf("%d%d",&a&b);注意细节.

已知向量a+b+c+d=0,求证|a|+|b|+|c|+|d| >=|a+d|+|b+d|+|c+d|.

已知向量a+b+c+d=0,求证|a|+|b|+|c|+|d| >=|a+d|+|b+d|+|c+d|.证明:简单一点,设向量是平面向量而不是空间向量.如果是立体空间向量,我想证明方法

已知线段a,b,c,d(b ≠d),如果a/b=c/d=k 那么 a-c/b-d=a+c/b+d 为什么?

∵a/b=c/d=k∴a=bkc=dk∴a-c/b-d=bk-dk/b-d=ka+c/b+d=bk+dk/b+d=k∴a-c/b-d=a+c/b+d∴结论得证今后遇见这种题就把不同的字母之间的关系用k

D = b+c c+d a+b

你好!很高兴为您解答,如有疑问请追问,如满意记得采纳,如有其他问题也可点我名字向我求助,再问:请问第二个行列式是怎么得到的再问:请问第二个行列式是怎么得到的再问:请问第二个行列式是怎么得到的再答:把第

如果a/B=C/D 那么A/A+B=C/C+D吗?

这个结论是成立的,不过我不知道叫什么A/B=C/D,用十字交叉法可化解成BC=AD,在左右两边各加上AC,就得到AC+BC=AC+AD,就可化解成A/(A+B)=C/(C+D).

已知a:b=c:d,求证(a+c):(a-c)=(b+d):(b-d)

直接打开算a:b=c:d推出ad=bc求证式:a+c:a-c=b+d:b-d推出(a+c)*(b-d)=(a-c)*(b+d)推出ab-ad+bc-cd=ab+ad-bc-cd推出2ad=2bc推出a

已知一个四边形的四条边的长分别为a,b,c,d,有一个角是直角,且a²+b²+c²+d²=ab+bc+cd+da,则此四

解题思路:结合完全平方公式进行配方,再根据平方式的非负性求出a,b,c,d间的关系,再判断形状解题过程:解:

a/b=c/d是否等于a/(a+b)=c/(c+d)

a+b或c+d=0时不成立,其余均成立

设c为正整数,并且a+b=c,b+c=d,d+a=b,求(a+b)(b+c)(c+d)(d+a)的最小值

a=-cb=2cc=cd=3c(a+b)(b+c)(c+d)(d+a)=24c^4所以当c=1时有最小值24