A为m*n矩阵已经足以说明r(A)

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/16 15:30:53
设A为m×n实矩阵,证明r(A^T A)=r(A)

方法:证明齐次线性方程组AX=0(1)与A^TAX=0(2)同解即可显然(1)的解是(2)的解设X0是(2)的解,则A^TAX0=0所以X0^TA^TAX0=0所以(AX0)^T(AX0)=0所以AX

设A为m*n矩阵,B为k*n矩阵,且r(A)+r(B)

设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)

一道矩阵证明题...实矩阵A_(m×n) r(A)=m A’ 为A的转置矩阵 证明 r(AA’)=m.

...不知道还需要解答不?记B=A',就是要证明rank(B'B)=rankB.利用(1)维数定理m=rankB+dimKer(B)(2)Bx=0当且仅当B'Bx=0,所以Ker(B)=Ker(B'B

A为m*n阶实矩阵,r(A)=n

不用那么复杂对任一m维列向量XX^T(AA^T)X=(A^TX)^T(A^TX)>=0(实向量的自内积的非负性)所以AA^T半正定#若要说明AA^T非正定则由于r(A^T)=r(A)=n所以A^TX=

A为m*n矩阵 B为n*s矩阵 证明r(A)=

这是什么结论?A,B不同型,不能相加再问:那请问r(A)

设A使一m×n矩阵,B ,C 分别为m阶,n阶可逆矩阵,证明:r(BA)=r(A)=r(AC)

任何一个可逆阵,可以写成若干个初等阵的积左(右)乘一个初等阵,相当于做一次初等行(列)变换所以一个可逆阵乘一个阵,相当于对矩阵做初等变换而初等变换不改变矩阵的秩所以命题成立

设A是m×n矩阵,R(A)=r,证明存在秩为r的m×n矩阵B与秩为r的r×n矩阵C,使A=BC

题目有点小错误,B的阶数是mxr,否则不能随便乘取m阶可逆阵P和n阶可逆阵Q使得A=PDQ,其中D=I_r000取B为P的前r列,C为Q的前r行即可.

已知A为m*n阵B为n*m矩阵 证明r(AB)≦min{r(A),r(B)},r表示矩阵的秩

将A进行列分块为(a1,a2,a3,...ap),于是AB=b11a1+b21a2+...bp1ap+b12a1+b22a2+...+...+bpnap所以AB可以由A的p个向量组线性线性表示,即r(

设A为m乘n实矩阵,且r(A)=m

题目应该是A乘A的转置为m阶正定矩阵.(AAT)T=AAT为对称阵任取m维向量x,考察xT(AAT)x=((ATx)T)ATx设xi为向量Ax的第i个元素,则((ATx)T)ATx=x1*x1+…+x

设A为M乘N的矩阵,且A的秩R(A)=M

知识点:向量组a1,...,as线性无关的充要条件是向量组的秩等于s.R(A)=M,所以A的行向量组的秩为M.而A有M行,所以A的行向量组线性无关.R(A)=M,所以A的列向量组的秩为M.而A有N行,

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

设A是m*n矩阵,B为n×s矩阵,r(A)=r<n,且AB=0.证明:秩(B)≦n-r

证:将B按列分块为B=(b1,...,bs)因为AB=0所以A(b1,...,bs)=(Ab1,...,Abs)=0所以Abi=0,i=1,...,s即B的列向量都是齐次线性方程组AX=0的解向量所以

问个线性代数题设A是m×n矩阵,R(A)=r,证明存在秩为r的m×r矩阵B与秩为r的r×n矩阵C使A=BC

这个叫做矩阵的满秩分解,《矩阵论》上的定理.证明:A是m×n矩阵,R(A)=r,则A一定能通过初等行列变换变成如下矩阵100...00010...00001...00...000...00就是左上角是

设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是

只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������޹صģ�B���

设A为 m×n矩阵,B为m×1矩阵,试说明r(A)与r(A b)的大小关系

因为A与(A,b)只少一列,所以r(A)=r(A,b)或r(A)=r(A,b)-1.r(A)=r(A,b)(A,b)的列组与A的列组等价b可由A的列向量组线性表示AX=b有解r(A)=r(A,b)-1

设A为m乘以n阶矩阵,且R(A)=n,判断AT(转置)A是否为正定矩阵,说明理由

答:A^TA是正定矩阵.对任一非零n维列向量x,因为r(A)=n,所以AX=0只有零解.所以Ax≠0所以(Ax)^T(Ax)>0即x^TA^TAx>0所以A^TA是正定矩阵.

A为n阶非奇异矩阵,B为n*m矩阵,证明r(AB)=r(A)

这是个错误结论试想,B是零矩阵,怎么会有R(AB)=R(A)!可逆矩阵才不改变乘积矩阵的秩