bd ce是三角形abc的中线,G.H分别是BE.CD的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 15:33:57
证明:∵三角形任意两边之和大于第三边∴AD+BD>AB,AD+DC>AC两式相加得:2AD+BD+DC>AB+AC∵D是BC中点∴2BD=BD+DC∴2AD+2BD>AB+AC∴AD+BD>二分之一(
用到两个定理1.直角三角形斜边中线等于斜边一半2.中位线平行边且为边长的一半∵△ABC为RT三角形又∵AD是BC上的中线∴AD=BC/2∵MN是中位线∴MN=BC/2∴AD=MN
证明:连接DE、DF∵AD是△ABC的中线∴D是BC的中点∵EF是△ABC的中位线∴E是AB的中点、F是AC的中点∴DE是△ABC的中位线、DF是△ABC的中位线∴DE∥AC,DF∥AB∴平行四边形A
等边三角形外心即外接圆圆心,是三条边的垂直平分线的交点三角形应为等边三角形如上图点O为外心CE,AD为AB,BC中线∴AE=EBCD=BDOE应垂直平分ABOD应垂直平分CB根据线段垂直平分线上的点到
三角形ABC的外心是两边垂直平分线的交点.垂直平分线与中线重和,三角形ABC的形状为等边三角形.
∵AD为△ABC的中线,AE是△ABD的中线,∴BD=CD,BE=DE,∴BE=1/2BD,BD=1/2BC;又∵AB=BD,∴BE=1/2AB,AB=1/2BC,∴BE/AB=AB/BC=1/2,∠
AD=CD=CB,三角形ADC等腰,角DAC=角DCA.同理角DCB=角DBC角DAC+角DCA+角DCB+角DBC=180度角DCA+角DCB=180/2=90度所以三角形ABC是直角三角形
如图,延长AD到F,使DF=AD,连接CF,在△ABD和△CFD中,∠ADB=∠CDF,BD=CD,AD=FD∴△ABD≌△FCD∴∠BAD=∠F,AB=CF∵∠BAD=∠CAD∴∠CAD=∠F∴AC
问题呢?没写出来.
1)取AB中点F,联结DF;DF平行于AC且D/F分别为各边中点,所以AC=2DF,要证AC=2AE,只需证AE=DF2)在三角形ADF和DAE中,AF=DE(中点平分),AD=DA,角DAFF=角E
1)取AB中点F,联结DF;DF平行于AC且D/F分别为各边中点,所以AC=2DF,要证AC=2AE,只需证AE=DF2)在三角形ADF和DAE中,AF=DE(中点平分),AD=DA,角DAFF=角E
因为AD是三角形 ABC 的中线所以BD=CD所以2CD=BC因为AE是三角形 ABD的中线所以BE=DE所以2DE=CD因为CE=CD+DE=2DE+DE=9所以DE=
延长中线AD至E,使DE=AD连接BE可以证明三角形BDE全等于三角形CDA然后AB+BE>AE>BE-AB12>AE>4因为AE=2AD所以2
设三角形ABC面积为s,所围成的三角形外侧的三个小三角形的面积分别为s1,s2,s3因为三个小三角形均与三角形ABC相似,且等于对应边之比的平方.所以有s1/s=1/4s2/s=1/4s2/s=1/4
分析:根据三角形的面积公式,得△ACE的面积是△ACD的面积的一半,△ACD的面积是△ABC的面积的一半.∵CE是△ACD的中线,∴S△ACD=2S△ACE=8cm².∵AD是△ABC的中线
∵AD是三角形ABC的中线∴AD把三角形ABC分成面积相等的两个三角形∴三角形ABD的面积是2平方厘米同理,BE是三角形ABD的中线,BE把三角形ABD分成面积相等的两个三角形∴三角形BDE的面积是1
因为BD是三角形ABC的中线所以DC=1/2AC所以S三角形BDC=1/2S三角形ABC因为S三角形ABC=12所以S三角形BDC=6因为CE是三角形DBC的中线所以BE=1/2BD所以S三角形BEC
将三角形拓展成平行四边形,即作CE平行于AB,作BE平行于AC,交点是A,那么ABC的中线AD是平行四边形对角线AE的一半,D就是对角线交点.这样由三角形ABE的边AE的取值范围得到AD的取值范围.即
连结DE、EF、DF∵AD、BE、CF是三角形的三条中线∴点D、E、F分别是边BC、AC、AB的中点∴DE、DF、EF分别是边AB、AC、BC的中位线∴DE=1/2ABDF=1/2ACEF=1/2BC
证明:延长AD到E,使DE=DA,连接BE.又BD=CD,∠BDE=∠CDA.∴⊿BDE≌⊿CDA(SAS),BE=AC.∵AE