抛物线y=1 3x² bx c经过A(-4,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:12:28
已知,直线y=x+6交x,y轴于A、C两点,经过A、O两点的抛物线y=ax^2+bx(a

(1)把x=0带入y=x+6得y=6∴C(0,6)同理的A(6,0)(2)AO中点为抛物线对称轴∴-b/2a=-3把x=-3带入直线得y=3所以顶点坐标(-3,3)带入抛物线得3=9a-3b和-b/2

如图,抛物线Y=2/3X^2+bX+c的图像经过A(6.0)C(0.4)

第一问,带入数值方程可解第二问,O和A点坐标知道,与EA直线平行的直线过O点,可以写出2个直线的方程,E点到另外个直线的距离可以表示出来,长度使用EA的长度,也不难(这里注意抛物线给出了X.Y的关系)

求经过抛物线y=12x

∵抛物线y=12x2+3的顶点为A和抛物线y=12(x−2)2的顶点为B,∴A(0,3),B(2,0),设直线AB的解析式为y=kx+b,则b=32k+b=0,解得k=−32b=3.∴直线AB的解析式

在平面直角坐标系xOy中,抛物线y=1/4x²+bx经过点A(2,-4)

(1)∵抛物线y=¼x²+bx经过点A(2,-4)∴1+2b=-4解得:b=-5/2∴抛物线的解析式是y=¼x²-(5/2)x(2)∵y=¼x

如图,已知抛物线经过原点O和x轴上另一点A,它的堆成轴为x=2,直线y=-2x-1经过抛物线上一点B(-2.m),且与y

(1)∵点B(-2,m)在直线y=-2x-1上,∴m=-2×(-2)-1=3.∴B(-2,3)∵抛物线经过原点O和点A,对称轴为x=2,∴点A的坐标为(4,0).设所求的抛物线对应函数关系式为y=a(

已知平面直角坐标系中,抛物线y=x²+bx+c经过原点和点a(4,0)

1、由抛物线经过原点跟(4,0),代入y=x2+bx+c得到c=0,b=-4,所以抛物线表达式:y=x2-4x.2、由oape面积为20得到p(m,n)中n=20/oa=5,代入抛物线表达式得到m=5

已知直线y=2x+4与x轴、y轴分别交于A、D两点,抛物线y=-1/2x2+bx+c经过点A、D,点B是抛物线与x轴的另

A(-2,0)D(0,4)  -2-2b+c=0  c=4b=1(1)这条抛物线的解析式:y=-1/2x^2+x+4B(4,0)(2)∵S△AOM:S△OMD=1:3∴点M的坐标(-2+2/4,4/4

如图,把抛物线y=1/2·x²平移得到抛物线m,抛物线m经过点A(-6,0)和原点,顶点为P...

过点P作PM⊥y轴于点M,∵抛物线平移后经过原点O和点A(-6,0),∴平移后的抛物线对称轴为x=-3,得出二次函数解析式为:y=1/2(x+3)^2+h,将(-6,0)代入得出:0=1/2(-6+3

直线y=ax+1d的图像经过第一,二,四象限,抛物线y=ax²-3x+a²-1经过原点

抛物线y=ax²-3x+a²-1经过原点a²-1=0a=±1直线y=ax+1d的图像经过第一,二,四象限a=-1

已知抛物线y=ax(x的平方)+bx+c经过A(-1,0),且经过直线y=x-3与x轴的交点B及与y轴的交点c,求抛物线

由题意,抛物线经过A(-1,0)(3,0)(0,-3).所以其解析式可设为y=a(x+1)(x-3).把x=0,y=-3代入,得a=1..所以y=(x+1)(x-3)=x²-2x-3..其顶

如图,抛物线y=ax²+bx-4a经过A(-1,0)

解题思路:分析抛物线过两点,由待定系数求出抛物线解析式;根据D、E中点坐标在直线BC上,求出D点关于直线BC对称点的坐标;有两种方法:法一作辅助线PF⊥AB于F,DE⊥BC于E,根据几何关系,先求出t

经过抛物线y^2=4x焦点的直线L交抛物线于A,B两点,|AB|=8,则直线L的倾斜角的大小为

用极坐标做以抛物线的焦点为极坐标原点,ρ1=2/(1-cosθ)(1)ρ1=2/(1-cos(θ+π))(2)ρ1+ρ2=8(3)把(1),(2)带入(3)解得θ即为所求

抛物线y=a(X+h)²+K经过点(-1,-4),且当X=1时,Y有最值是-2,求该抛物线的解析式.

代入方程-4=a﹙-1+h)²+k①-2=a(1+h)²+k②①-②-2=a(-1+h)²-a(1+h)²=a(-1+h-1-h)(-1+h+1+h)=-4ah

已知a为实数,求证:抛物线y=x^2+(a+2)x-2a+1都经过一个定点且顶点都若在一条抛物线上

令x=2可以算得y=4+2a+4-2a+1=9所以函数恒过定点(2,9)设定点坐标为(s,t)把顶点横坐标x=-(a+2)/2代入有得到纵坐标y=(a+2)^/4-(a+2)^2/2-2a+1即s=-

已知抛物线y=-x2+bx+c经过点A(0,4),且抛物线的对称轴为直线x=2 求该抛物线的解析式

答:(1)抛物线经过点A(0,4),代入抛物线方程得:c=4.抛物线的对称轴为直线x=2,代入抛物线对称轴方程:X=-b/2a,则,b=4,那么,抛物线的解析式为:y=-x2+4x+4..(2)要构成

已知直线经过抛物线y的平方等于4x的焦点F,且与抛物线相交与A,B两点,|AF|=2,则|BF|=?

抛物线焦点F(1,0),准线为x=-1,设A(a,b)根据抛物线上点到焦点和准线距离相等知|AF|=a-(-1)=2,所以a=1,所以AF垂直于x轴,因此|BF|=|AF|=2

已知抛物线y=-x的平方+bx+c经过点A(3,0),B(-1,0). 1、求抛物线的关系式 2、求抛物线的顶点坐标 (

1、将A、B两点坐标代入解析式得:-9+3b+c=0-1-b+c=0解方程组得:b=2,c=3可得函数解析式为:y=-x²+2x+32、将原函数解析式配方得:y=-x²+2x+3=

已知:如图,抛物线y=x²+bx+c的图像经过点A(-1,0)…

C(0,-3),y(0)=c=-3,y(-1)=1-3+b(-1)=0,b=-2y=x^2-2x-3=(x-1)^2-4,顶点(1,-4)D(m,m^2-2m-3),BC直线:x-y-3=0D到Bc的