收敛函数及其子数列
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:47:02
不是的收敛函数有很多的,不单是数列,比如还有反比例函数,指数函数等收敛函数通俗一点讲就是随着X不断变大时(也包括向反方向变小到负无穷),有极限,也就是近似等于一个常数.举个例子1/X,在X很大时,1/
我觉得你没有理解数列极限的研究对象,对于无穷多项的数列,我们才可以求它的极限,讨论它的敛散性,对于有限项的数列我们是不定义其极限的,自然更谈不上子数列,收敛等问题了,数列极限的表达式limxn如果写全
充分性取子列Xn及得证必要性假设Xn以b为极限因为Xn收敛,所以对任意的a>0存在M>0,当n>M时有|xn-b|=n,所以有|Xnk-b|
用求积求导法计算和.请采纳,谢谢!
首先,数列收敛就是数列有极限,(-1)^n*(1/n)偶数项和奇数项都是收敛的,极限都为0;其次,一个收敛数列其任意子数列必收敛,这可以结合数列收敛定义反证出;最后强调,子数列收敛针对任意子序列,不分
子列{Xnk}的下标nk(k是n的下标)一方面代表原数列{Xn}的第nk项,另一方面也表示子列的第k项.我们需要找到正整数K,使得k>K时,恒有|Xnk-a|<ε成立.既然Xnk还是{Xn}的第nk项
其子序列的极限与原来的收敛序列的极限相同.从取K=N开始,按定义证明就是说n(k)>N就有|Xn(k)-a|
不妨设这个数单增,即a1=ank>ak所以数列ak是一个单增有上界的数列,所以收敛.进一步还可以说明ak→
聚点定理:任意有界无穷数集至少有一个聚点.对此数列,若有无穷多个相同的项,则此以这些相同的项构成的数列的为该数列的收敛子列.若没有无穷多个相同的项,则该数列的每一个元素作为集合S的一个元素.由聚点定理
证明:任取一收敛子列(一定存在)设其极限为a,则在a的一充分小领域外,一定有这一有界数列的无限项(仍然有界),从而有收敛子列其极限一定不等于a再问:在充分小的邻域外应该只有有限项了啊,因为从n>N开始
很简单呀1/n就是个发散数列但取子序列1/n[i]其中取n[i]=n²就是子数列就是1/n²收敛
比如an=1-1/n(当n是奇数)an=2-1/n(当n是偶数)显然数列{an}不收敛但如果令bn=a(2n)那么{bn}就是{an}的一个子列,且{bn}收敛于2于是{bn}就是{an}的一个收敛子
“简单”证明是不太可能了,建议你自己看一下数学分析,严格的推导我就不说了,给你个大体思想.首先设c
设数列{Xn}为有界数列,有A
就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性.从字面可以含义,就可理解为,函数的值总被某个值约束着,就是收敛
用定义归并性定理的内容显然,它自己就是它的一个子列,所以收敛
不是,因为数列只是趋向于正无穷大,函数则不一样,有各种断点什么的
1,-1,1,-1,1,-1.该数列有收敛子列,但本身不收敛.
不妨设Xn为单增数列,设{Xk}为{Xn}的收敛子列,且{Xk}极限为a,则a为{Xk}的上界下证a为{Xn}的上界任取Xn0,存在Xk0,使Xk0在数列{Xk}中,且k0>n0由于a为{Xk}的上界
嗯,要看是不是正项级数了,如果是正项的,那么成立.如果不是正想的级数,那么该结论未必成立.比如级数-1/n收敛,偶数项或者奇数项构成的级数都发散.再答:不好意思,上面例子写错了级数,要写成交错项的…是