数列fx的前n项和为sn,若数列an的各项按如下规律排列,二分之一
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:35:46
1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-
应该是“Sn=2an+Sn-1”吧?
1.na(n+1)=n[S(n+1)-Sn]=(n+2)SnnS(n+1)=2(n+1)SnS(n+1)/(n+1)=2*Sn/n所以{Sn/n}是公比为2的等比数列2.S1/1=a1=1所以Sn/n
当n=1时,a1=S1=23a1+13,解得a1=1当n≥2时,an=Sn-Sn-1=(23an+13)-(23an−1+13)=23an−23an−1,整理可得13an=−23an−1,即anan−
Sn=n^2*an-n(n-1)=n^2*(Sn-S(n-1))-n(n-1)(n^2-1)Sn-n^2*S(n-1)-n(n-1)=0(n+1)Sn-n^2*S(n-1)/(n-1)-n=0((n+
当n=1,2,3,4,…,cosnπ2=0,-1,0,1,0,-1,0,1…,ncosnπ2=0,-2,0,4,0,-6,0,8…;∴数列{an}的每四项和为:2+4=6,而2014÷4=503…2,
Sn=n-5an-85(1)S(n+1)=n+1-5a(n+1)-85(2)(2)-(1)整理得6a(n+1)=1+5an即a(n+1)-1=(5/6)(an-1)又由S1=a1=1-5a1-85得a
由Sn=n-Sa知,an=Sn-Sn-1=1(>=2).a1=1-Sa
1.n=1时,a1=S1=1²+1=2n≥2时,Sn=n²+nS(n-1)=(n-1)²+(n-1)an=Sn-S(n-1)=n²+n-(n-1)²-
T(500)=(S1+S2+S3+.+Sn)/500=2008T=(2+S1+2+S2+2+S3+.+2+S500+2)/501=(2*501+S1+S2+S3+...+S500)/501=(2008
(1)证明:∵Sn=n-5an-85,n∈N*(1)∴Sn+1=(n+1)-5an+1-85(2),由(2)-(1)可得:an+1=1-5(an+1-an),即:an+1-1=56(an-1),从而{
(1)当n=1时,a1=S1=13(a1−1),得a1=−12;当n=2时,S2=a1+a2=13(a2−1),得a2=14,同理可得a3=−18.(2)当n≥2时,an=Sn−Sn−1=13(an−
设数列{an}的前n项和为Sn,Sn=a1(3n−1)2(对于所有n≥1),则a4=S4-S3=a1(81−1)2−a1(27−1)2=27a1,且a4=54,则a1=2故答案为2
∵数列{an}的前n项和为Sn,Sn=1-23an,∴a1=s1=1-23a1,解得 a1=35.且n≥2时,an=Sn-Sn-1=(1-23an)-(1-23an-1)=23an-1-23
q=1/3a1乘a2乘a3=8得出a2=2a1=6所以an=a1乘以q的n-1此方=6乘以1/3的n-1次方
解题思路:方法:数列通项的求法:已知sn,求an。求和:错位相减法。解题过程:
(1)当n=1时,T1=2S1-1因为T1=S1=a1,所以a1=2a1-1,求得a1=1(2)当n≥2时,Sn=Tn-Tn-1=2Sn-n2-[2Sn-1-(n-1)2]=2Sn-2Sn-1-2n+
n=1时an=s1=3n≥2时an=Sn-Sn-1=3^n-3^(n-1)=2*3^(n-1)
Sn=3an+2n可得S(n-1)=3a(n-1)+2n-2an=Sn-S(n-1)=3an+2n-3a(n-1)-2n+2即:an=3an-3a(n-1)+23a(n-1)=2an+2配项可得:3[
解题思路:考查数列的通项,考查等差数列的证明,考查数列的求和,考查存在性问题的探究,考查分离参数法的运用解题过程: