数列xn收敛,yn发散,求证xnyn是否发散
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:04:50
发散数列,单独的(n+1)/n是收敛数列,可是乘以-1之后,就不收敛了.故发散
先证xn收敛yn0,当n>N时|xn-yn-2|
充分性取子列Xn及得证必要性假设Xn以b为极限因为Xn收敛,所以对任意的a>0存在M>0,当n>M时有|xn-b|=n,所以有|Xnk-b|
这样的证明,只要举出反例来就可以了如:xn=(-1)^nyn=(-1)^n两个数列都是发散的但xnyn=1就是收敛的
(3X(n-1),3Xn)min=|f(x)/sinx|=|求和bk|我期待正确解答,题目很好啊!
(a+b)/2>=(ab)^1/2Yn+1=(Xn*Yn)^1/2小于=(Xn+Yn)/2=Xn+1Xn+1-Xn=(Yn-Xn)/2小于0所以Xn单调减少xn小于a大于0Yn+1/Yn=(Xn/Yn
收敛convergence与某个实数a无限接近的数列{an},即当时,就说数列{an}是收敛的,否则就说{an}为发散数列.例如,{}是收敛数列,因为当n无限增大时,与实数0无限接近,也即.{}也是收
列{Xn}满足Xn+1=Xn^2+Xn,X1=a(a-1),数列{Yn}满足Yn=1/(Xn+1),设Pn=X/(Xn+1),Sn=Y1+Y2+...+Yn,则aSn+Pn=_1____
对于已知Xn与Yn是发散的时候,|Xn|+|Yn|的敛散性是不确定的,即可能发散,也可能收敛,以下各举一例说明:(1)Xn=Yn=(-1)^n时,此时显然Xn与Yn均发散,而|Xn|+|Yn|=2,即
无法判断.xn=1/2^m,yn=2^nxn*yn=2^(n-m)n>=m,发散n
不能确定.举个实例,令Xn=常数-1,Zn=常数1,若Yn=sin(n),则Yn的极限就不存在.因为它不能确定于一个定值.
收敛就是有极限,发散没有极限.够简单吧?
收敛..当n趋向很大是,xn趋向于0证明:对任意给定的e,取N=1/e,当n>N时|xn-0|
发散数列.当n=2k时,趋于-1当n=2k+1时,趋于1所以发散.再问:当n=2k+1时xn=0啊再答:设主要用来决定=[(-1)^(n+1)的符号如果是1+(-1)^n那么:当n=2k时,趋于2当n
{xn+yn}、{xn-yn}发散{xn*yn}可能收敛,可能发散.
应该是2n>N1和2n-1>N2,而不是n>N1和n>N2.不影响结果.
可能收敛,也可能发散
艽嬖谡齆,使得n>N时,不等式|Xn-a|
这个不用证啊,显然的.无穷大乘以有界不为0=无穷大.除可以当成乘1/yn.要证也是一两句就证玩了,用定义.再问:就是那一两句怎么说再答:有个希腊字母打不出来,读音是“ansunal”。一般叫“ansu