数列收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:40:12
收敛数列的保号性是什么

保号性的定义如下:假设数列{An}收敛于A1,若有正整数N,使得当n>N时An>0(或0(或N时,An>0(或

高数 证明 数列 收敛

注意-1<(1-√3)/(1+√3)<0,当n→∞时,[(1-√3)/(1+√3)]^n=0.再问:我想复杂了,一直在算An+1/Bn+1与An/Bn的关系,真的太2了···

收敛数列保号性讲解

如果数列收敛到一个正数则必然有一项排在其后面的所有的(无限项)项都大于0.收敛到负数的情况类似.这里也可以推出:收敛到正数的数列只可能有有限多项是非正数(0或负数仅仅有限多项可以几千几万项很多但总是有

收敛数列是什么意思

设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|

条件收敛的数列的子数列收敛么

首先,数列收敛就是数列有极限,(-1)^n*(1/n)偶数项和奇数项都是收敛的,极限都为0;其次,一个收敛数列其任意子数列必收敛,这可以结合数列收敛定义反证出;最后强调,子数列收敛针对任意子序列,不分

发散数列 收敛数列定义

收敛convergence与某个实数a无限接近的数列{an},即当时,就说数列{an}是收敛的,否则就说{an}为发散数列.例如,{}是收敛数列,因为当n无限增大时,与实数0无限接近,也即.{}也是收

举例说明,数列un绝对值收敛,数列un未必收敛

看错题目了.Un=(-1)^n即可,|Un|->1,但是Un发散

为什么收敛数列必有界?

主观上来说:所谓“收敛”就是指“收敛于某处”,据此定义,收敛数列必有极限了,当然此极限值就是“收敛于”的“某处”啦具体可以参考第五版“高等数学”上册的“柯西审敛原理”充要条件自己可以推导出来

收敛数列证明, 

打字没法儿排版,看图片吧!因为有下标,会显示较小,建议点击放大!【经济数学团队为你解答!】再问:谢谢您再答:如果满意,请采纳,谢谢!

什么是“收敛子数列”?

比如an=1-1/n(当n是奇数)an=2-1/n(当n是偶数)显然数列{an}不收敛但如果令bn=a(2n)那么{bn}就是{an}的一个子列,且{bn}收敛于2于是{bn}就是{an}的一个收敛子

证明数列收敛 

单调性用作差开证明,很明显是单增的,所以要找上界,上界可以适当放缩来找,把分母变小就可以,把分母里头的123…去掉,写成公比二分之一的等比数列求和,写出来很容易的看出上界是1,单调有界数列必收敛得证.

数学 数学分析 数列 收敛: 证明收敛的数列是有界的

证明:若an→a,那么有对所有的e>0,存在自然数N,当n>N,时|an-a|N时a-e

收敛数列的有界性, 

你要理解,这个证明的目的就是找到一个数M使它大于所以的Xn

如何证明数列收敛?

楼上说有问题.数列收敛的定义:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|

数列收敛到底是什么意思

就是数列越往后,越趋近于某值,但并不能等于某值,只是无限接近,这时就说该数列极限存在,也就是数列收敛!

数列收敛与A是什么意思

数列的极限是A再问:数列的发散呢再答:就是没有极限

收敛数列乘发散数列是什么数列?

可能收敛,也可能发散

收敛数列概念判断

1.T,用定义定理等易证.2.T,可直接从定义考虑.3.F,前者是数列,后者代表求和4.F,an=0,bn=1,0,1,1…5.F,an=0,1,0…bn=0,-1,0,…1.T,定理.2.F,对于英

常数数列是否收敛数列?

常数数列一定收敛,因为很容易看出来数列的极限是那个常数楼主你的An=(-1)的n次方这个例子是说明有界数列不一定收敛