数列的前n项 满足a1等于r sn等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:49:46
S(n+1)+s(n)=2a(n+1);s(n)+s(n-1)=2a(n);上下相减;a(n+1)+a(n)=2a(n+1)-2a(n);所以a(n+1)=3a(n);即a(n)是以a(1)=3为首项
an+2SnSn-1=0Sn-Sn-1+2SnSn-1=01/Sn-1-1/Sn+2=01/Sn-1/Sn-1=2{1/Sn}是以首项为1/a1=2公差为2的等差数列1/Sn=2+(n-1)*2=2n
Sn^2=an×(Sn-1/2)=(Sn-Sn-1)×(Sn-1/2)整理,得Sn-1-Sn=2SnSn-1等式两边同除以SnSn-11/Sn-1/Sn-1=2,为定值.1/S1=1/a1=1/1=1
An=Sn-Sn-1所以原式=Sn-Sn-1+2SnSn-1=0同时除以2SnSn-11/Sn-1/Sn-1=2所以1/Sn为等差数列1/S1=21/Sn=2+(n-1)*2=2n所以Sn=1/2n再
(2)bn=1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]Tn=1/2{1/1-1/3+1/3-1/5+1/5-1/7+...+1/(2n-1)-1/(2n+1)}=1/2
(1)由2S(n+1)+2S(n)=3a(n+1)^2可得2S(n)+2S(n-1)=3a(n)^2两式相减得2a(n+1)+2a(n)=3[a(n+1)^2-a(n)^2]由此可得a(n+1)=-a
2·a(n)=2[Sn-S(n-1)]=(n+1)an-n·a(n-1)∴(n-1)an=n·a(n-1),∴an/[a(n-1)]=n/(n-1),.,a3/a2=3/2,a2/a1=2/1,将上述
an+2Sn·S(n-1)=0(n≥2),Sn-S(n-1)=an所以Sn-S(n-1)+2Sn·S(n-1)=0(n≥2)两边同时除以Sn·S(n-1),得1/S(n-1)-1/sn+2=0即1/s
(1)因为2an=Sn*S(n-1)所以2(Sn-S(n-1))=Sn*S(n-1)两边同除Sn*S(n-1)整理的1/Sn-1/S(n-1)=-1/2(n>1)所以数列{1/Sn}是以1/Sn=1/
Sn-S(n-1)-2^n=S(n-1)Sn/2^n-S(n-1)/2^(n-1)=1S1=1soSn/2^n=nSn=n*2^nan=Sn-S(n-1)=n*2^n-(n-1)2^(n-1)an/2
a1+2a2+3a3+...+nan=n(n+1)*(n+2),则:a1+2a2+3a3+...+(n-1)×an-1=n(n-1)*(n+1),两式相减:nan=n(n+1)*(n+2)-n(n-1
∵An+2SnS(n-1)=0(n≥2)∴Sn-S(n-1)+2SnS(n-1)=0(n≥2)∴S(n-1)=Sn+2SnS(n-1)(n≥2)两边同时除以SnS(n-1),S(n-1)/[SnS(n
an=Sn-Sn-1=-SnS(n-1)(Sn-Sn-1)/[SnS(n-1)]=-11/S(n-1)-1/Sn=-11/Sn-1/S(n-1)=1,为定值.1/S1=1/a1=1/(1/2)=2数列
前N项的和Sn加上第n+1项An+1,当然是前n+1项的和Sn+1咯
An+2Sn*Sn-1=0Sn-Sn-1+2Sn*Sn-1=01/Sn-1-1/Sn+2=01/Sn=2nSn=1/2n(n>=2)An=1/(2n-2n^2)(n>=2)=1/2(n=1)
据题意:5+(n-1)*d=5*(n-1)+(1+2+···n-2)*d5+(n-1)*d=5n-5+{[(n-2)(n-1)]/2}*d5+n*d-d=5n-5+[(n^2)/2]*d-(3n/2)
显然可递推求出:因为sn+1/sn=an-2=sn-s(n-1)-2,所以有1/sn=-s(n-1)-2,进而有sn=1/[-s(n-1)-2],据s1=a1=-1/2,得出:s2=-2/3,进而反复
由题意知:2an/[anSn-(Sn)²]=1(n>1)则:(Sn)²-anSn+2an=0(n>1)又因为:an=Sn-S(n-1)(n>1)所以:(Sn)²-[Sn-
n>=2时,An=A(n-1)+A(n-2)+……+A2+A1A(n+1)=An+A(n-1)+A(n-2)+……+A2+A1两式相减A(n+1)-An=AnA(n+1)=2An{An}从第二项开始是