方阵等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:38:53
设a是A的特征值,则对任意多项式f,若f(A)=0则f(a)=0(特征值都是最小多项式的根,最小多项式整除任意化零多项式,所以特征值是任意化零多项式的根).现在f(A)=A^m=0,所以f(a)=a^
A的特征值是1,0,2则A+2E的特征值是(λ+2):3,2,4所以|A+2E|=3*2*4=24再问:谢了
可以.需注意:1.某行的K倍加到另一行时要左乘K,列变换时右乘K2.分块矩阵不满足对角线法则行列式0AmBn0=(-1)^mn|A||B|再问:你说的K是——可以和子块矩阵相乘的矩阵吗再答:是的!你对
只需证A有特征值是1或-1.设Ax=kx(k为复特征值,x为复特征向量),则x'A'=k'x'(以'表示共轭转置,k'就是k的共轭)两式相乘,得x'x=x'A'Ax=|k|^2*x'x又x'x>0,所
1.E-A²=E(E+A)(E-A)=EE-A的逆为E+A2.A*=(d-b-ca)
因为AB=0所以B的列向量都是AX=0的解.所以B的列向量组可以由AX=0的基础解系线性表示所以r(B)
证明:因为|A|=0所以AA*=|A|E=0所以A*的列向量都是AX=0的解.又因为|A|=0所以r(A)=1,所以r(A)>=n-1所以r(A)=n-1.所以AX=0的基础解系含n-r(A)=1个解
这个书上有对任意的方阵A,B|AB|=|A||B|对于A的k次方,可以由归内法证明.k=1时,有|A|=|A|是显然的设k=n时成立,即|A^n|=|A|^n那么当k=n+1时|A^(n+1)|=|A
不对.相似矩阵有相同的秩A的秩等于那个对角矩阵主对角线上非零元素的个数
A²+3A-E=0A(A+3E)=E所以(A+3E)^(-1)=A
证明:假设|A*|≠0由A*可逆因为AA*=|A|E=0等式两边右乘(A*)^-1则得A=0故A*=0所以|A*|=0矛盾.
充要条件:充要条件是行列式不等于0或者特征值都不等于0或者满秩一些充分条件:若AB=E则A,B都可逆
设a是A的特征值则a^k是A^k的特征值因为A^k=0,而零矩阵的特征值只能是0所以a^k=0所以a=0.故A的特征值为0,...,0所以A+E的特征值为1,...,1所以|A+E|=1故A+E可逆.
1-9组成16的方阵似乎不可能吧能组成16的只有169,178,259,268,349,358,367和457八组数要组成方阵的话必须有一个数出现了4次放在最中间,四个数出现了三次放在四个角上,每个边
(结论应该是r(A)=.不然取A=0直接得到矛盾)考虑两个线性空间:(1)A的列空间,即A的各列向量张成的线性空间.它的维数即是A的列秩,等于A的秩,即r(A).(2)Ax=0的解空间,即Ax=0的所
这个结论是正确的,当然就是个定理一个方阵乘以一个常数实际上就等于将这个矩阵中的每个元素都乘以这个常数,所以也等于此方阵乘以一个对角阵,该对角阵的每个对角元素都等于该常数.
这个题是个错题,我令A和B均为n阶单位矩阵E,满足你的前提条件,但是AB=E不等于0
因为A^2-2A+E=0所以A(A-2E)=-E所以A可逆,且A^-1=2E-A.
列秩等于2有一列可由其余两列线性表示比如a1=k2a2+k3a3那么c1-k2c2-k3c3第1列就全化为0了所以行列式等于0也可以直接从矩阵的秩的定义看矩阵的秩就是最高阶非零子式的阶秩为2,3阶子式