无穷级数 1 nlnn n=1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:53:28
从第二项开始,n/(n²-2)>1/n,从1/n发散可以知道该数列发散
limln(1+1/n)/(1/n)=limnln(1+1/n)=limln(1+1/n)^n=limlne=1级数发散
级数通项un=ln(n/(n+1))lim(n→无穷)un=lim(n→无穷)ln(n/(n+1))=lim(n→无穷)ln(1/(1+1/n))=0因为sn=ln(1/(n+1))所以S=lim(n
经济数学团队为你解答,有不清楚请追问.请及时评价.再问:得出e^x这一步可以写详细点吗再答:
现在回答还有分吗?再问:有啊再答:
很简单Sn=u1+u2+.+un=1-1/(n+1)!(两两相消即可得)
利用根式判别法,lim(n→∞)(2^n*n!/n^n)^(1/n)=lim(n→∞)(2*(n!)^(1/n))/n=2/e<1,所以原级数收敛.
解:因为sn=根号(n+1)-1所以s=lim(n→无穷)sn=lim(根号(n+1)-1)不存在所以该函数收敛
直接在arctanx的Maclaurin展开当中代x=1即可楼上的做法也是对的,只不过需要引进虚数及Euler公式了
解:级数通项un=1/(n+3)当n→无穷时lim(n→无穷)1/(n+3)=0因为sn=∑(k=1到n)(1/(k+3))所以S=lim(n→无穷)Sn=不存在所以该级数发散
知道部分和的意思就行经济数学团队为你解答,有不清楚请追问.请及时评价.
令u_n=1/lnn,则{u_n}单调递减趋于0.所以这个级数是Leibniz型级数,一定收敛.该级数条件收敛,因为∑u_n是不收敛的,这是因为u_n>1/n,而∑1/n发散
当p>1时,1/n^plnn
1/n发散,e^-n^2收敛,所以整个级数发散e^-n的收敛性是很强的,强于所有的p级数
令s(x)=Σ1/(2n!)x^2n=1/2!x²+1/4!x^4+1/6!x^6+.s'(x)=1/1!x+1/3!x³+1/5!x^5+.s''(x)=
考虑S(x)=∑(n^2)(x^n)|x|
这个推导不太严谨..但让我们不得不佩服欧拉大神啊...首先展开sinx/x=1-x^2/3!+x^4/5!+.然后利用sinx/x的零点,容易知零点为nπ所以sinx/x=(1-x/π)(1+x/π)
为了求出级数的级数和,我们从幂级数S(x)=∑x^n/n(n从1到+∞,|x|<1)着手进行计算,显然S(1/2)=∑1/n2^n.对S(x)进行求导运算得S'(x)=∑x^n(n从0到+∞,|x|<
因为lim(n-->∞)ln(1+1/n)/(1/n)=1也就是这个级数与1/n等价所以是发散的或者根据对任意的nln(1+1/n)>1/n+1以及级数∑1/n+1发散来判断这个级数发散
-1/2,用收敛的必要条件.经济数学团队帮你解答.请及时评价.再问:谢谢还有道题目概念都不理解--再答:请先采纳,再追问。再问:少了阶乘符号了吧?再答:是抄漏了,不好意思。