星行线x=acos
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:15:54
x^1/2+y^1/2=a^1/2主要是表达y:y=(a^1/2-x^1/2)^2=a(1-(cosΘ)^2)^2=a(sinΘ)^4.则x=a(cosθ)^4,y=a(sinΘ)^4.(a≥0).
x=cos³ty=acos³t曲线方程y=ax这是一条直线,所以曲率为零.
x=asinθ+acosθ=√2a(sinθcos45+cosθsin45)=√2asin(θ+45)同样:y=acosθ+asinθ=√2a(sinθcos45+cosθsin45)=√2asin(
你的题目中有一个问题,没有指明哪个是参数,另外,感觉你应该核对一下题目,x,y的表达式估计不对,请核对后追问.如果题目无误,θ是参数则x-y=acosθ,y=asinθ∴(x-y)²+y
已知函数f(x)=Acos(wx+φ)(A>0,W>0,-π/2
(dy/dt)/(dx/dt)为一导,(dy/dt)/(dx/dt)对t的导数比上(dx/dt)为二导.再问:谁不会方法呀!我求过程呀!再答:呵呵!方法会,怎么能不会过程呢?你开玩笑吧!过程就是通过方
∵x∈[0,π2],∴2x+π3∈[π3,4π3],∴-1≤cos(2x+π3)≤12,当a>0时,-a≤acos(2x+π3)≤12a,∵ymax=4,∴12a+3=4,∴a=2;当a<0时,12a
用格林公式求星型线x=acos³t,y=asin³t的面积.S=(1/2)∮xdy-ydx=[0,2π](1/2)∫(3a²cos⁴tsin²t+3
确实是只要计算第一象限部分的长度,再乘以4即可首先,弧微分ds=√[(dx)^2+(dy)^2]=√[(x')^2+(y')^2]dt=3a|sintcost|dt,x'、y'表示求导其次,弧长s=4
(1)因为f(x)的最大值为3,所以A=2.f(x)=2cos^2(wx+φ)+1=cos(2wx+2φ)+2.f(x)的图像的相邻两对称轴间的距离为2,则最小正周期为4.T=2π/2w=4,则w=π
解题思路:三角函数。解题过程:解:因为是方程f(x)=0的解.所以0=sin+a,所以a=-2,∴=sinx-cosx-1=sin(x-)-1,x∈[0,π],所以,sin(x-),sin(x-)-1
令cosx=t则y=t^2-2at+a^2+a-1(-1≤t≤1)这是关于t一元二次方程对称轴为a若a≥0.y在f(-1)处取得最小值即1+2a+a^2+a-1=1/2解得a=(-3+√11)/2若a
y=sin(x+π/6)sin(x-π/6)+acosx=-1/2[cos(x+π/6+x-π/6)-cos(x+π/6-x+π/6)+acosx=-1/2(cos2x-cosπ/3)+acosx=-
(1)由最大值为2得到1*1+a*a=2*2,所有a值为根号3.化简得到2*π/6+α+π/3=(n+1/2)π,根据取值范围求出α=5π/6,(2)先将函数周期缩短为原来的二分之一,再将函数向左平移
我不太会打符号.首先,这个式子是负的,A=三分之二倍根号二ω=3φ=负的四分之pai
由图可得:振幅A=2/3,最小正周期T=2*(11π/12-7π/12)=2π/3,则ω=2π/T=3所以函数解析式可写为:y=2/3*cos(3x+φ)又函数图像过点(π/2,-2/3),代入上式得
1)f(x)=a[1/2*sin2x-√3/2*(1+cos2x)+√3/2]+b=a[1/2sin2x-√3/2cos2x]+b=asin(2x-π/3)+b因为a>0,所以单调减区间为:2kπ+π
y=acosx=bsin+cc为平行偏移量
按格林公式,取P(x,y)=-y,Q(x,y)=x,则封闭曲线L所围图形的面积A=1/2*∫L-ydx+xdy=1/2*∫(上限2π下限0)(abcos^2θ+absin^2θ)dθ=(1/2)ab∫