cos2x cos^2xsin^2x的不定积分是多少?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 11:47:20
d/dx∫[x^2→0]xsin(t^2)dt=∫[x^2→0]sin(t^2)dt-2(x^2)sin(x^4),(x^2是下限,是上限取+号)再问:求详细过程再答:1).∫[x^2→0]xsin(
(1)∵函数f(x)=12sin2xsinφ+cos2xcosφ-12sin(π2+φ)(0<φ<π),∴f(x)=12sin2xsin∅+1+cos2x2•cos∅-12cos∅=12s
这题直接求导就行了用乘法求导的公式y‘=2sin(2x+5)+2x*2cos(2x+5)就出来了要实在要用复合函数的话,你既然令U=2X+5,那么你求导时候前面的X也要换成U,也就是把所有的X换成U,
由于被积函数是奇函数被积区间[-1,1]关于原点对称所以积分=0
∫cos2x/(sinx*cosx)dx=∫cos2x/(1/2*sin2x)dx=4∫cos2x/(sin2x)dx=4∫csc2x*cot2xdx=-2∫csc2x*cot2xd(2x)=-2cs
∵y=cos2xcosπ5−2sinxcosxsin6π5y=cos2xcosπ5−sin2xsin6π5=cos2xcosπ5−sin2xsinπ5=cos(2x+π5)∴2x+π5∈[2kπ-π,
B这是对等价无穷小的考察.首先知道a是比b高阶的无穷小意思就是lima/b=0所以lim(1-cosx)ln(1+x^2)/xsin(x^n)=01-cosx~x^2/2ln(1+x^2)~x^2si
lim(x→0){(2x-sin2x)/(x*sin^2x)}=lim(x→0){(2x-sin2x)/(x*x^2*(sin^2x/x^2))}=lim(x→0){(2x-sin2x)/(x*x^2
解法一的(cos2x+1)/2dx应该是(1-cos2x)/2dx高手犯了个低级错误哦!sin^2x=(1-cos2x)/2
1、∫(cot)^2•xdx=∫[(csc)^2•x-1]dx=-cotx-x+c2、∫cos2x/(cos^2xsin^2x)dx=∫(cos^2x-sin^2x)/(cos
求lim{[(sinx)/x]+xsin(1/2x)}(x→∞)用极限的可加性拆成lim(sinx/x)和lim[xsinx(1/2x)]sinx/x,因为x→∞,所以1/x趋向0,sinx在1和-1
由y=f*g(f,g是两个函数)的导数公式可知:y=f'*g+f*g'又由f(g)'=f'*g'所以y'=(2x)'*sin(2x+5)+2x*[sin(2x+5)]'=2sin(2x+5)+2xco
y=xsin2xcos2x=12xsin4x,y′=12sin4x+2xcos4x,故答案为:y′=12sin4x+2xcos4x.
解y=2xsin(2x+5)y'=2(x)'sin(2x+5)+2x[sin(2x+5)]'(2x+5)'=2sin(2x+5)+2xcos(2x+5)×2=2sin(2x+5)+4xcos(2x+5
y=2sin(2x+5)+2xcos(2x再答:+5)乘以2再答:没发完整,再发一遍再答:y=2sin(2x+5)+4xcos(2x+5)
(Ⅰ)f(x)=12sin2xsinφ+cos2xcosφ-sin(π2+φ)=12sin2xsinφ+12(1+cos2x)cosφ-12cosφ=12sin2xsinφ+12cos2xcosφ=1
由y=f*g(f,g是两个函数)的导数公式可知:y=f'*g+f*g'又由f(g)'=f'*g'所以y'=(2x)'*sin(2x+5)+2x*[sin(2x+5)]'=2sin(2x+5)+2xco
详细积分过程,请见图片解答.点击放大,再点击再放大.
x趋向于无穷,sinx/x最大也就是1/x,即0x趋向去无穷的时候,sin(1/2x)的极限,相当于1/2x趋向于0时sin(1/2x)的极限,即1/2x(因为有公式,x趋向于0时,sinx趋向于x)