曲边梯形绕y轴所得立方体

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:54:57
抛物线y=x^2与y^2=x所围成的图形分别绕x轴和y轴旋转所得的旋转体体积

绕x轴旋转所得的旋转体体积=∫π(x-x^4)dx=π(x²/2-x^5/5)│=π(1/2-1/5)=3π/10;绕y轴旋转所得的旋转体体积=∫2πx(√x-x²)dx=2π∫[

曲线y-1=z绕Y轴旋转一周所得的曲面方程.

这是旋转曲面f(y,z)=0所以旋转曲面是f(+-√(x^2+y^2),z)=0所以曲面是x^2+y^2=(z^2+1)^2

已知等腰梯形对角线长为5,顺次连接此梯形各边中点所得四边形周长是

顺次连接等腰梯形各边的中点所得到的四边形是菱形.这个菱形的边长是等腰梯形对角线长的一半.所以,这个四边形的周长是:5/2×4=10.

为什么算梯形立方体的平均面积要用(上表面面积+下表面面积+上表面边长×下表面边

可以尝试自己推一下公式把梯形立方体看做是长方体减去几个三角形立方体用长方体体积公式-应扣除的三角形立方体公式=梯形立方体体积公式自己推公式还是有助于公式记忆的,再问:自己刚刚毕业在看一些计算工程量方面

将四边形ABCD绕AD边旋转一周得到一个立方体,画出该立方体的示意图,并求出其体积

就是两个相对的圆锥体,体积就是圆锥的底面积乘以高除以三再乘以2,圆锥的直径就是四边形ABCD的对角线长

一个直角梯形的上底比下底短,该梯形绕它的上底旋转一周所得旋转体的体积为112π,该梯形绕它的下底旋转一周所得旋转体的体积

亲,稍等我算算啊再答:这个方程能列出来吗?再问:你可以列列吗?再答:可以列,就是解的麻烦,呵呵再问:噢!有其他方法吗?再答:没有,因为告诉了体积,求周长就麻烦。我给你列一下式子吧再问:好的再答:这是列

求曲线y=sinx在[0,π]上的曲边梯形绕x轴旋转一周所形成的旋转体的体积.

设旋转体的体积为V,则v=∫π0πsin2xdx=π∫π01−cos2x2dx=π2[π−∫π0cos2xdx]=π22−π2•2∫π0cosxd(2x)=π22−π•sin2x.π0.故旋转体的体积

如图四边形ABCD是直角梯形 以AB边为轴将梯形旋转一周得到一个立方体图形 它的体积是多少?(单位;厘米)

=π×3²×3+π×3²×3/3=36π立方厘米再问:两个!再答:另一条:=π×3×(3²+3×6+6²)÷3=63π立方厘米也可以:过D点作AB的垂线交AB于

梯形立方体体积计算公式怎么算?求救 急用.

(10.3×7.5+7.8×4.7)×4.4=501.204立方米(上底面积+下底面积)×高

曲线x平方+y平方=1(y≥0)绕x轴旋转一周所得的集合体体积为

直接用球体积公式就可以了!4/3pi!再问:怎么会是球呢我没搞懂他是怎么转的能画个图吗?再答:原来的曲线是个上半圆,绕着其直径转一圈啦!

求曲线{x=1,y=z}绕y轴旋转一周所得的曲面方程.

x^2-y^2+z^2=1设点M(a,b,c)在直线L上,点N为点M绕Z轴旋转所得的点,设N(x,y,z),则有z=c,x^2+y^2=a^2+b^2,于是有:总之消去a,b,c;就可以得到了

求由y=sinx,y=cosx所围成图形绕x轴旋转一周所得旋转体体积.

首先必须指出:他们若不加限制,则答案为“无限大”.题目应该写明【四分之一周期】的图像旋转生成的立体图形的体积.就是图中任一个色块构成的旋转体体积.有常用的体积公式.我写了思路,你自己是否可以解决啦?&

求曲线y=x^2与x=1,y=0所围图形分别绕x轴和y轴旋转所得旋转体的体积

y=x^2和x=1相交于(1,1)点,绕X轴旋转所成体积V1=π∫(0→1)y^2dx=π∫(0→1)x^4dx=πx^5/5(0→1)=π/5.绕y轴旋转所成体积V2=π*1^2*1-π∫(0→1)

求y=lnx,y=1及x=e^2所围平面图形分别绕x轴和y轴旋转所得旋转体的体积

哎,一条是横线,一条是竖线,一条是自然对数曲线.干脆套用积分公式就可以啦.当它绕着x轴旋转时,被积函数是y的平方.上限为x=e^2,下限为x=e.如图.当它绕着y轴旋转时,方法相同.最好是自己完成哈.

求曲线y=lnx,y=0,y=ln2和x=0所围图形绕y轴所得旋转体体积?

答:用积分求:V=π∫0到ln2(e^y)^2dy=π∫0到ln2e^(2y)dy=πe^(2n)/2|0到ln2=2π-π/2=3π/2

y=|x|和y=3围成的封闭图形绕y轴旋转一周所得几何体的体积与绕x轴旋转一周所得几何体的体积比是

1:1绕Y轴旋转的体积为:底面半径为3,高为3的圆锥体体积,即为1/3的圆柱体积(底面半径为3,高为3)绕X轴旋转的体积为:一个底面半径为3,高为3的圆柱体积减去两个底面半径为3,高为3的圆锥体体积,

梯形的中位线截两腰所得的两个小梯形是否相似

不相似,相似要求每个对应边的比都相同,中位线平分两腰,腰的比为1比1,而底边的比不可能是1比1