曲边梯形绕y轴所得立方体
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:54:57
绕x轴旋转所得的旋转体体积=∫π(x-x^4)dx=π(x²/2-x^5/5)│=π(1/2-1/5)=3π/10;绕y轴旋转所得的旋转体体积=∫2πx(√x-x²)dx=2π∫[
这是旋转曲面f(y,z)=0所以旋转曲面是f(+-√(x^2+y^2),z)=0所以曲面是x^2+y^2=(z^2+1)^2
顺次连接等腰梯形各边的中点所得到的四边形是菱形.这个菱形的边长是等腰梯形对角线长的一半.所以,这个四边形的周长是:5/2×4=10.
画个大概的图吧
可以尝试自己推一下公式把梯形立方体看做是长方体减去几个三角形立方体用长方体体积公式-应扣除的三角形立方体公式=梯形立方体体积公式自己推公式还是有助于公式记忆的,再问:自己刚刚毕业在看一些计算工程量方面
就是两个相对的圆锥体,体积就是圆锥的底面积乘以高除以三再乘以2,圆锥的直径就是四边形ABCD的对角线长
亲,稍等我算算啊再答:这个方程能列出来吗?再问:你可以列列吗?再答:可以列,就是解的麻烦,呵呵再问:噢!有其他方法吗?再答:没有,因为告诉了体积,求周长就麻烦。我给你列一下式子吧再问:好的再答:这是列
设旋转体的体积为V,则v=∫π0πsin2xdx=π∫π01−cos2x2dx=π2[π−∫π0cos2xdx]=π22−π2•2∫π0cosxd(2x)=π22−π•sin2x.π0.故旋转体的体积
=π×3²×3+π×3²×3/3=36π立方厘米再问:两个!再答:另一条:=π×3×(3²+3×6+6²)÷3=63π立方厘米也可以:过D点作AB的垂线交AB于
(10.3×7.5+7.8×4.7)×4.4=501.204立方米(上底面积+下底面积)×高
直接用球体积公式就可以了!4/3pi!再问:怎么会是球呢我没搞懂他是怎么转的能画个图吗?再答:原来的曲线是个上半圆,绕着其直径转一圈啦!
x^2-y^2+z^2=1设点M(a,b,c)在直线L上,点N为点M绕Z轴旋转所得的点,设N(x,y,z),则有z=c,x^2+y^2=a^2+b^2,于是有:总之消去a,b,c;就可以得到了
首先必须指出:他们若不加限制,则答案为“无限大”.题目应该写明【四分之一周期】的图像旋转生成的立体图形的体积.就是图中任一个色块构成的旋转体体积.有常用的体积公式.我写了思路,你自己是否可以解决啦?&
y=x^2和x=1相交于(1,1)点,绕X轴旋转所成体积V1=π∫(0→1)y^2dx=π∫(0→1)x^4dx=πx^5/5(0→1)=π/5.绕y轴旋转所成体积V2=π*1^2*1-π∫(0→1)
哎,一条是横线,一条是竖线,一条是自然对数曲线.干脆套用积分公式就可以啦.当它绕着x轴旋转时,被积函数是y的平方.上限为x=e^2,下限为x=e.如图.当它绕着y轴旋转时,方法相同.最好是自己完成哈.
答:用积分求:V=π∫0到ln2(e^y)^2dy=π∫0到ln2e^(2y)dy=πe^(2n)/2|0到ln2=2π-π/2=3π/2
1:1绕Y轴旋转的体积为:底面半径为3,高为3的圆锥体体积,即为1/3的圆柱体积(底面半径为3,高为3)绕X轴旋转的体积为:一个底面半径为3,高为3的圆柱体积减去两个底面半径为3,高为3的圆锥体体积,
不相似,相似要求每个对应边的比都相同,中位线平分两腰,腰的比为1比1,而底边的比不可能是1比1
πx2^2x4+πx2^2x(4-3)/4=17π