曲面积分∫∫ds= ,其中 为半球面z=√a2-(x-2)2-y2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:55:13
为啥没有下面的部分呢?条件不足.把问题修正一下.计算曲面积分∫∫Σx²dS,其中Σ为上球面z=√(1-x²-y²),x²+y²=1被z=-h所截得的部
积分曲线就是一个大圆的圆周为了清楚我用图片写给你了,要被审核一会(请稍等几分钟,或者直接hi我)再问:麻烦你在看看这道题好么求∫x²ds,其中c为x²+y²+z²
dz/dx=-x/√(4-x²-y²),dz/dy=-y/√(4-x²-y²)dS=√[1+(dz/dx)²+(dz/dy)²]dxdy=2
不用那么麻烦把曲面公式代入被积函数中∫∫(x^2+y^2+z^2)ds=∫∫a^2ds=(a^2)*4πa^2=4πa^4再问:但答案是8πa^4再答:答案是4πa^4,我用不同的方法算了一遍,请看:
再问:还没学高斯系数额,就用第一类曲面积分算法可以吗再答:这就是第一类曲面积分的算法。请参照二重积分中,计算曲面面积的方法,其中就有高斯系数。再问:请问倒数第二部a^4怎么出来变a^3了再答:这种解法
积分曲线x^2+(y+1)^2=1所以参数方程是x=cost,y=-1+sint.t∈[0,2π]ds=√[(x't)^2+(y't)^2]dt=dt∫√(x^2+y^2)ds=∫√(-2y)ds=∫
x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²
z=√(a^2-x^2-y^2),zx’=-x/√(a^2-x^2-y^2),zy’=-y/√(a^2-x^2-y^2),ds=√(zx’^2+zy’^2+1)dxdy=dxdy/√(a^2-x^2-
考虑yz面Σ₁:x=√(4-y²)或Σ₂:x=-√(4-y²)dx/dy=-y/√(4-y²)dx/dz=0∫∫Σz²dS=2∫∫Σ
用高斯公式:P=x^3,Q=z,R=y,积分区域为圆柱:x^2+y^2=4,与平面z=0,Z=1I=∫∫∫3x^2dxdydz(下面用柱面坐标)=3∫(0,2π)(cosθ)^2dθ∫(0,2)r^3
为了利用高斯公式,将目标曲面补成封闭的曲面,且方向向外侧,最后积分值减去这一部分即可.目标曲面为半球面,补充半球面的底面部分,设为∑a.新形成的封闭曲面设为∑b.在底面时,z=0,dz=0.则:原积分
如图:整个封闭曲面可分为四部分:Σ=Σ1+Σ2+Σ3+Σ4∫∫Σ1(x²+y²+z²)dS,曲面为z=0=∫∫Σ1(x²+y²)dS=∫∫D(x
球面x^2+y^2+z^2=9∫(闭合)x^2ds=(1/3)∮3x^2ds因为积分曲面为球面,根据对称性有,∮x^2ds=∮y^2ds=∮z^2ds=(1/3)∮(x^2+y^2+z^2)ds因为是
先参数化x=|a|sinφcosθy=|a|sinφsinθz=|a|cosφ因为z>=0,且0
L由y=√(a²-x²)和y=x和y=-x围成参数化:t:-π/4→π/4x=acost,y=asintdx=-asintdt,dy=acostdtds=adt∫L(x+y)e^(
这题用高斯公式做简单,做辅助曲面S‘:z=0,则S+S'构成闭合曲面,取外侧为正.设P=(x^3+e^ysinz,Q=-3x^2y,R=z,则ðP/ðx=3x^2,ðQ/