曲面积分转体积积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:55:59
加我口口吧:1194567058把这些弄懂确实很有必要,我把我知道的告诉你.二重积分是求体积的三重积分是求立体的质量的第一类曲线积分是求弧线质量的第二类曲线积分是求功的第一类曲面积分是求面质量的第二类
记V={(x,y,z):x^2+y^2
下侧的法向量是(αz/αx,αz/αy,-1)=(x,y,-1),算算cosα与cosγ
第二类曲面积分可以通过高斯公式化成三重积分来做的,但是这个要注意高斯公式应用条件,要封闭空间,有时给出的不是封闭空间的,需要添加辅助面,构成封闭空间,还要注意正方向,高斯公式规定是外法线方向为正的……
两种方法都可以,因为这是基于高斯公式的.你的第二种方法算的之所以不对,我估计你是在计算三重积分时把r=a代人了,具体计算如下,先求出div=2/r,因此流量=∫∫∫2dV/r,注意这时r=a不能代人,
1.被积函数取谁都一样,习惯上变量写作x,y(后面式子中都只有x,y),你喜欢用x,z也好.2.是4A1.因为积分仅限为z正值情况,z为负值情况并未包含;加上另一个柱面的两面就是4倍.3.积分域是D,
那不是曲顶柱体的体积吗再问:对面积的曲面积分,只是曲面再答:这个应该叫第一型曲面积分考研数学一里面的吧,就是把三重积分化为了二重积分而已。就好比一个平面被扭曲了,实质上是伪三重积分可以化成二重积分的。
看这结果对不?
先说三者的关系吧.在上半椭球面S1,解出Z=正的根号下.在下半椭球面S2,解出Z=负的根号下.在计算曲面积分时,无论Z正还是Z负,其中的dS都是一样的;但是被积函数中的Z,在S1与S2符号相反.所以,
那个积分区域是指整个球面的下半部分:z≤0.(注意不是球体),所以是空心圆.由方程z=-√(1-x²-y²)可以看出,而上半部分就是z=√(1-x²-y²),z
楼主,你好,当我看到这个题目时很眼熟,刚翻了下书,果然是原题:我用的是同济大学第六版下P236习题的第二题我还是给楼主答案和过程吧:答案:(12/5)*π*a^5过程:由高斯公式:∫∫∫[(dP/dx
取z=0下侧为∑1z=3上侧为∑2那么∫∫∑1xdydz+ydzdx+zdxdy=0∫∫∑2xdydz+ydzdx+zdxdy=3∫∫dxdy=3(9π)=27π且根据高斯公式∫∫∑+∑1+∑2xdy
再答:再答:思路就是这样,如果有计算错误,请自己改正再问:估计算的不对,最后结果是2/15再答:那自己算一遍吧再问:再问:这个怎么算?再答:r=sint再答:采纳啊亲,赚分不易
答案是4πR^2,把积分区域的函数带入,就是一个被积函数为常数的积分了,乘以积分曲面的面积就好再问:你的答案不对再答:答案是多少再问:4兀再答:你把R等于1就是答案了,我想的是半径为R,是我疏忽了再问
你的做法没问题.可以把曲面方程代入曲面积分的被积函数,但是化为二重积分后不能再代入了再问:恩,麻烦再帮我看看这个问题http://zhidao.baidu.com/question/445417783
这是大学理工科的高等数学.一般人真答不上来.二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积.在Δδi上任取一点(
第一类曲线、曲面积分是在积分曲线每点指定一个标量函数,与线元相乘后求积分.第二类曲线、曲面积分是在积分曲线每点指定一个矢量函数,与线元矢量点乘之后求积分.这可以保证两者积出来之后都是实数.这样,第一类
分两种情况.再答:再答:再答:图片顺序反了……再答:再答:再答:奥高公式就是高斯公式。