有初始状态为零的二阶微分方程x 0.2x 0.4x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:56:59
(1/y)dx+(1/x)dy=0(1/y)dx=-(1/x)dy等号两边各乘以xyxdx=-ydy积分(1/2)x^2+(C1)=-(1/2)y^2+(C2)化简x^2+y^2=C代入初试条件4^2
我去,你这个……肯定得先把方程化成一阶线型方程组哇,二阶导数怎么算!百度文库找个实例看看
答:dy/dx=2xyy'=2xyy'/y=2x(lny)'=2x积分:lny=x^2+lnCln(y/C)=x^2y=Ce^(x^2)x=0时:y=C=1所以:特解为y=e^(x^2)
如果式子可以导成y'+P(x)y=Q(x)的形式,利用公式y=[∫Q(x)e^(∫P(x)dx)+C]e^(-∫P(x)dx)求解设P(x)=2Q(x)=e^xy=[∫Q(x)e^(∫P(x)dx)+
第1道,设y'=u,则u'(1+e^x)=-u,解du/u=-dx/(1+e^x)得lnu=ln(1+e^x)-x+C1,即u=e^C1(1+e^x)/e^x=e^(C1-x)+e^C1.所以y=∫u
y'-4y=e^(3x)e^(-4x)(y'-4y)=e^(-x)(e^(-4x)y)'=e^(-x)两边积分:e^(-4x)y=-e^(-x)+C代入x=0,y=3:3=-1+C,C=4所以e^(-
y'+(y/x)^2=0令y/x=u,则y'=u+xu'所以u+xu'+u^2=0xdu/dx=-u^2-udu/[u(u-1)]=-dx/x两边积分:ln|u-1|-ln|u|=-ln|x|+C(y
提供思路,不保证结果准确.
∫(ALog[(v+Bx)/v]-d*Sin[a])^(1/2)dx不能用初等函数表示出来,故提示你:它给出了隐函数形式的解.再问:请问能用将这个隐式用matlab进行绘图,就是画出x随t的时变曲线图
将微分方程变形后,是否可以得到下面形式ay‘’+by'+cy=f(x)这样可利用特征值法求解ar²+br+c=0的根.这里就举有两个不同实数根例子y=C1*e^(r1*x)+C2*e^(r2
时不变系统是指系统参数、特性不随时间而变化,与系统初始状态是否为零无关.
此微分方程为可分离变量的微分方程原方程可化为(xy)'+x=0设u=xy则u'+x=0故u=-x²/2+C即y=C/x-x/2再问:哥...我们在考试救命用正确率有保证不
要先去绝对值,再确定C.因为去绝对值时可能会产生增根.你的y=x-2明显不满足初始条件.再问:谢谢你的如往常的精彩回答question:刚学到微分方程这节,遇到好多在求---例如∫1/f(x)dx=l
dy/y=dx/x积分:ln|y|=ln|x|+C1得y=Cx代入y(1)=1,得:C=1故y=x
xy'+y=-xe^x(xy)'=-xe^x两边积分:xy=-∫xe^xdx=-xe^x+∫e^xdx=-xe^x+e^x+C令x=1:0=-e+e+C,C=0所以xy=-xe^x+e^x显然x≠0所
y'+y/x=(y/x)^2令u=y/x,则y'=u+xu'u+xu'+u=u^2xdu/dx=u^2-2udu/(u(u-2))=dx/x1/2*(1/(u-2)-1/u)du=dx/x1/2*(l
一个质量无限大,体积无限小的奇点,然后大爆炸产生,体积迅速膨胀.所以应该是奇点.
显然,齐次方程y'+y/x=0的通解是y=C/x(C是积分常数)于是,根据常数变易法,设原方程的解为y=C(x)/x(C(x)是关于x的函数)∵y'=[C'(x)x-C(x)]/x²代入原方
再问:哦哦哦哦非常感谢!!