有初始状态为零的二阶微分方程x 0.2x 0.4x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:56:59
求微分方程dx/y+dy/x=0满足初始条件y(4)=2特解的为?

(1/y)dx+(1/x)dy=0(1/y)dx=-(1/x)dy等号两边各乘以xyxdx=-ydy积分(1/2)x^2+(C1)=-(1/2)y^2+(C2)化简x^2+y^2=C代入初试条件4^2

matlab 用ode45解决二元微分方程,有两个初始条件

我去,你这个……肯定得先把方程化成一阶线型方程组哇,二阶导数怎么算!百度文库找个实例看看

求解微分方程dy/dx=2xy,满足初始条件:x=0,y=1的特解

答:dy/dx=2xyy'=2xyy'/y=2x(lny)'=2x积分:lny=x^2+lnCln(y/C)=x^2y=Ce^(x^2)x=0时:y=C=1所以:特解为y=e^(x^2)

求微分方程y'+2y=e^x满足初始条件y(0)=1/3的特解

如果式子可以导成y'+P(x)y=Q(x)的形式,利用公式y=[∫Q(x)e^(∫P(x)dx)+C]e^(-∫P(x)dx)求解设P(x)=2Q(x)=e^xy=[∫Q(x)e^(∫P(x)dx)+

跪求高数高手可降阶的二阶微分方程 y’’=f(x,y’)型的微分方程

第1道,设y'=u,则u'(1+e^x)=-u,解du/u=-dx/(1+e^x)得lnu=ln(1+e^x)-x+C1,即u=e^C1(1+e^x)/e^x=e^(C1-x)+e^C1.所以y=∫u

求微分方程dy/dx=e^3x+4y满足初始条件y在x=0的时候结果为3的特解

y'-4y=e^(3x)e^(-4x)(y'-4y)=e^(-x)(e^(-4x)y)'=e^(-x)两边积分:e^(-4x)y=-e^(-x)+C代入x=0,y=3:3=-1+C,C=4所以e^(-

求微分方程x^2 dy+y^2 dx=0满足初始条件为x=1,y=2的特解

y'+(y/x)^2=0令y/x=u,则y'=u+xu'所以u+xu'+u^2=0xdu/dx=-u^2-udu/[u(u-1)]=-dx/x两边积分:ln|u-1|-ln|u|=-ln|x|+C(y

二阶微分方程,不显含x的形式!大一高数!

提供思路,不保证结果准确.

求微分方程dx/dt=[A*ln((v+Bx)/v)-Dsin(a)]^0.5的解,其中x为变量,其余为常量,初始条件t

∫(ALog[(v+Bx)/v]-d*Sin[a])^(1/2)dx不能用初等函数表示出来,故提示你:它给出了隐函数形式的解.再问:请问能用将这个隐式用matlab进行绘图,就是画出x随t的时变曲线图

怎么判断微分方程为二阶线性微分方程

将微分方程变形后,是否可以得到下面形式ay‘’+by'+cy=f(x)这样可利用特征值法求解ar²+br+c=0的根.这里就举有两个不同实数根例子y=C1*e^(r1*x)+C2*e^(r2

求微分方程xy’+x+y=0满足初始条件y(1)=0的特解

此微分方程为可分离变量的微分方程原方程可化为(xy)'+x=0设u=xy则u'+x=0故u=-x²/2+C即y=C/x-x/2再问:哥...我们在考试救命用正确率有保证不

求微分方程(x-1)dy-(1+y)dx=0满足初始条件y(0)=1的特解

要先去绝对值,再确定C.因为去绝对值时可能会产生增根.你的y=x-2明显不满足初始条件.再问:谢谢你的如往常的精彩回答question:刚学到微分方程这节,遇到好多在求---例如∫1/f(x)dx=l

求微分方程dy/dx=y/x满足初始条件y|x=1=1的特解

dy/y=dx/x积分:ln|y|=ln|x|+C1得y=Cx代入y(1)=1,得:C=1故y=x

求微分方程xy'+y+xe^x=0满足初始条件y(1)=0的特解

xy'+y=-xe^x(xy)'=-xe^x两边积分:xy=-∫xe^xdx=-xe^x+∫e^xdx=-xe^x+e^x+C令x=1:0=-e+e+C,C=0所以xy=-xe^x+e^x显然x≠0所

求微分方程x^2y撇+xy=y^3满足初始条件y(1)=1的特解

y'+y/x=(y/x)^2令u=y/x,则y'=u+xu'u+xu'+u=u^2xdu/dx=u^2-2udu/(u(u-2))=dx/x1/2*(1/(u-2)-1/u)du=dx/x1/2*(l

宇宙的初始状态是什么样的

一个质量无限大,体积无限小的奇点,然后大爆炸产生,体积迅速膨胀.所以应该是奇点.

求微分方程y'+y/x=sinx/x和满足初始条件y(π)=1的特解.

显然,齐次方程y'+y/x=0的通解是y=C/x(C是积分常数)于是,根据常数变易法,设原方程的解为y=C(x)/x(C(x)是关于x的函数)∵y'=[C'(x)x-C(x)]/x²代入原方