dx-dy ydz其中l为闭合折线abc

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/04 11:03:05
计算∫L(x^2+3y)dx+(y^2-x)dy 其中L为上半圆周y=√(4x-x^2)从O(0,0)到A(4,0)

积分曲线为圆心在(2,0),半径为2的上半圆周,补充曲线L‘:y=0上从(4,0)到(0,0)的一段,这样L+L’构成了闭曲线,可以用格林公式计算.设P=x^2+3y,Q=y^2-x,则Q‘x=-1,

计算∫(e^xsiny+x)dy-(e^xcosy+y)dx,其中L为从点(-2,0)沿曲线(逆时针)x^2/4+y^2

P=-(e^xcosy+y),∂P/∂y=e^xsiny-1Q=e^xsiny+x,∂Q/∂x=e^xsiny+1补线段L1:y=0,x从2到-2则L+

求∫l dx-dy+ydz,其中L为有向闭折线ABCA,这里的A,B,C依次为(1,0,0),(0,1,0),(0,0,

∫=∫AB+∫BC+∫CA.在AB:dz=0.x+y=1.dy=-dx.∫AB=∫[1,0]2dx=2x在[1,0]值差=-2.在BC:dx=0.y+z=1dy=-dz.y=1-z.∫BC=∫[0,1

∫ cos(x+y^2)+2y)dx+(2ycos(x+y^2)+3x)dy ,其中L为曲线y=sinx上从x=0到x=

P=cos(x+y^2)+2yQ=2ycos(x+y^2)+3xP'y=-2ysin(x+y^2)+2Q'x=-2ysin(x+y^2)+3添加线段L1:(π,0)到(0,0)注意由L和L1构成的封闭

计算曲线积分∫L(2xy+3sinx)dx+(x2-ey)dy,其中L为摆线 x=t-sint Y=1-cost 从点O

由于∂P/∂y=∂Q/∂x,因此积分与路径无关,重新选择积分路线L1:从O(0,0)到B(π,0),y=0,x:0→πL2:从B(π,0)到A(π,2)

格林公式:闭合曲线(3x+2y)dx-(x-4y)dy/4x^2+9y^2,其中L为椭圆x^2/9+y^2/4=1的逆时

x^2/9+y^2/4=1变形得4x^2+9y^2=36用这个直接去换掉原曲线积分中的分母式,则有原积分=1/36∫(3x+2y)dx-(x-4y)dy再用格林公式可得原式=1/36∫-3dxdy=-

计算曲线积分∫L (x^2+2xy)dx+(x^2+y^4)dy,其中L为点(0,0)到点(1,1)的曲线弧y=sin(

用格林公式啊,发现积分与路径无关,然后你就找一条最好简单的路径,比如(0,0)到(1,0)到(1,1),来算,最后1/3+1/5=8/15

求∫L{(x+y)/(x^2+y^2)dx-(x+y)/(x^2+y^2)dy},其中L为圆周x^2+y^2=a^2(按

直接用第二型积分的计算公式.圆的参数方程为x=acost,y=asint,dx=-asintdt,dy=acostdt,逆时针方向对应的t从0到2pi.代入得原积分=积分(从0到2pi)[(acost

若半径为r的圆C,x^2+y^2+Dx+Ey+F=0,的圆心C到直线l:Dx+Ey+F=0的距离为d,其中D^2+E^2

(1)圆心r²=D²/4+E²/4-F>0,把D²+E²=F²代入,得F²/4-F>0,解得F0),F>4.(2)把圆心(-D/2

求∫(e∧xsiny-y)dx+(e∧xcosy-1)dy,其中L为点A(a,0)到点B(0,0)的上半圆周

由于曲线不封闭,补L1:y=0,x:0-->aL+L1为封闭曲线,可用格林公式:∫(e∧xsiny-y)dx+(e∧xcosy-1)dy=∫∫1dxdy被积函数为1,结果为区域的面积,这是个半圆,面积

高数格林公式问题.计算I = ∫L [(x+4y)dy+(x-y)dx] / (x^2+4*y^2) 其中L为单位圆 x

取充分小的正数e,在单位圆内做椭圆x^2+4y^2=e^2,方向为逆时针方向,记为S+S包围区域为D,其长轴为e,短轴为e/2,面积为pi*e^2/2.原积分=∫LPdx+Qdy=∫L并S-Pdx+Q

∫L(e的x次siny-my)dx+(e的x次cosy-m)dy ,其中L为从A(a,0)到O(0,0)的上半圆 x方+

添加y=0,这条直线,那么原图形成了一个封闭曲线,可以运用格林公式原式=∫L(e^xcosy-(e^xcosy-m))dxdy=∫Lmdxdy就等于m乘以半圆的面积,就是1/8πa^2然后求y=0的曲

求∮(x+y)dx-(x-y)dy 其中L为椭圆x^2/a^2+y^2/b^2=1 取逆时针方向 的解法

∵令P=x+y,Q=-x+y∴αP/αy=1,αQ/αx=-1∵L为椭圆x^2/a^2+y^2/b^2=1取逆时针方向∴根据格林定理,得∮(x+y)dx-(x-y)dy=∫∫(αQ/αx-αP/αy)

用斯托克斯公式求I=∮L(y^2-z^2)dx+(z^2-x^2)dy+(x^2-y^2)dz,其中L为平面x+y+z=

设∑为平面x+y+z=1上的这个三角形区域,取上侧.∑的法向量是(1,1,1),方向余弦都是1/√3.由斯托克斯公式,I=∫∫[(-2y-2z)/√3+(-2z-2x)/√3+(-2x-2y)/√3]

计算∫(x^2-2y)dx+(x+y^2)dy其中L为三顶点分别为(0,0)(3,0)(3,4)的三角形正向边界

由格林公式,∂Q/∂x=1,∂y/∂y=-2∫(x^2-2y)dx+(x+y^2)dy=∫∫(1+2)dxdy=3∫∫1dxdy被积函数为1,积分结果是

计算 ∫ ∟(e^y+x)dx+(xe^y-2y)dy,其中L是以(0,0)为起点,(2,1)为终点的任意曲线

这题目不同上面题目终点是(1,1)(0,0)到(2,1)可以看作(0,0)到(2,0)到(2,1)(0,0)到(2,0)y=0x∈[0,2]代进式子∫L(e^y+x)dx+(xe^y-2y)dy=∫[

计算(e^xsiny-3y+x^2)dx+(e^xcosy-x)dy,其中L为:2x^2+y^2=1

再问:r/���2��ô���İ���再答:�ſ˱ȱ任��dxdy=rd��dr/��2