E(Xi)与n个样本的均值的关系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:45:04
总体X具有均值μ,方差σ^2.从总体中取得容量为n的样本,Xˉ为样本均值,S^2为样本方差

对于θ,如果E(θ^)=θ,则θ^为θ的无偏估计.而样本均值可以认为是总体均值的无偏估计,即E(Xˉ)=E(X)=μ而样本方差可以认为是总体方差的无偏估计,即E(S^2)=D(X)=σ^2所以这个题就

样本均值的标准差为什么是总体均值标准差除以根号n?

Xi独立且服从X的分布D(Xi)=D(X)X的均值=1/n*(X1+X2+……+Xn)=1/n*X1+1/n*X2+……+1/n*Xn正态分布的线性组合仍服从正态分布D(X的均值)=D[1/n*(X1

中位数,样本均值,样本方差,统计量中不含参数的是

统计量定义:设X1,X2,X3...,Xn为取自某总体的样本,若样本函数T=T(X1,X2,X3...,Xn)中不含有任何未知参数,则称T为统计量.从统计量的定义可知,任何统计量都是不含参数的,统计量

样本均值的标准差是什么

反应数据的波动范围,表现出数据的稳定性.

设总体X~N(40,25的平方),从总体X中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于5的概率.

2(1-Φ(2)),然后查正态分布表,用的是同分布中心极限定理.不好打,就是把样本均值与总体均值之差标准化,除以σ/√n,然后5也除以这个,因为这个标准正态分布关于Y轴对称,所以就2倍的那个了.

看到有的书中说样本方差的公式是:随机变量与样本均值之差平方后求和,再除以N;有的数中说是随机变量与样本均值之差平方后求和

除以N的是有偏样本方差,除以N-1的是无偏样方差.当N很大的时候,N》30的时候,两个样本方差没有什么区别,都可以用.但如果N比较小,在15左右,20左右,那么就必须要用无偏的样本方差.除以N-1的

概率论与数理统计 样本均值的方差

首先,样本的概念,然后取为不同的样本均值的总体值的一部分实际上是一个变量,当然,样品的平均值.当样品无穷大,样本均值=群体平均2方差的意思是,因为样本均值实际上是一个变量,当然,方差,因为它是不同的整

总体N(50,25),从中抽取100个样本,求样本均值与总体均值之差的绝对值大于2.5的概率

没法打公式,用的图片再问:额....答案是0.3830不过我还是要谢谢你

概率论与数理统计,既然样本均值能做总体期望的无偏估计量,那样本均值的期望是什么意思?样本均值不是等于期望吗

样本是固定的一组数,已经知道了他们的均值,不存在期望这一说法,期望是针对不确定的随机变量来说的.再问:样本均值,不是样本值再问:样本均值是一个估计量,它的观察值才是数值不是吗再答:不是,样本均值不能说

从总体X中抽取样本(x1,x2,……,xn),试证:∑从i=1到n,xi-C的平方在C=x的均值 时达到最小

∑从i=1到n[xi-C]²=(x1-C)²+(x2-C)²+(x3-C)²+…+(xn-C)²=nC²-(x1+x2+x3+…+xn)+[

总体N(12,4)中随机抽取一容量为5的样本X1,……X5,求样本均值与总体均值之差的绝对值大于1的概率

记x0为这5个样本的平均数因为xi服从正态分布N(12,4)故我们有x0服从N(12,4/5)(n个样本取均值后总体均值不变,总体方差变为原来的1/n)故sqrt(5)(x0-12)/2服从标准正态分

为了估计正态总体均值,抽取足够大的样本,以95%的概率使样本均值偏离总体均值不超过总体标准差e的25%,试求样本容量

经济数学团队为你解答,有不清楚请追问.请及时评价.再问:再问:能帮忙解答一下吗今天没听懂再答:这次帮你一下,以后有问题请新开提问。

为什么样本均值的标准差是总体均值标准差除以根号n?

刚刚好也在研究这个问题,看了一些其他的答案.顺便贴过来给你看看,不过我虽然知道公式怎么用了.但是还是没有理解为什么一个是除以n,一个是除以n-1样本标准差在真实世界中,除非在某些特殊情况下,找到一个总

样本方差 与 样本均值的方差 是不一样的吧

样本方差=[求和(各项x-x的平均值)/(自由度-1)]开方样本平均数的方差=[求和(各组样本的平均数-各组样本平均数的平均数)/自由度-1]开方LZ...如果我没记错的话...除非所有数据算出来都一

在总体N(60,15²)中随机抽取一容量为81的样本,问样本均值与总体均值之差的绝对值大于4的概率是多少

这简单,我要有时间,给你做出来再问:给你时间,截至之前做出来都行。我要详细解答再答:请看答案,不知道怎么答案改不过来了,应该是=2X(1-∮(1.44)=2X(1-0.9521)=0.1498

设X1,X2.Xn(n>2)为来自总体N(0,a^2)的样本,记Yi=Xi-X的均值,

X1,X2.Xn来自总体为N(0,σ^2)=>∑xi~N(0,nσ^2)=>∑xi/√(nσ^2)~N(0,1)=>[∑xi/√(nσ^2)]^2~x^2(1)=>C=nσ^2