E.F是AB.BC的中点,G.H分AC为三等分,EG.FH的延长线交于D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:21:09
额,赶不上节奏啊再问:楼上的看不懂,团长你能复述一遍吗?再答:GH是三角形DAC的中位线,所以GH=AC/2同理,EF是三角形BAC的中位线,所以EF=AC/2因此GH=EFEH是三角形ABD的中位线
已知:四边形ABCD是(平行四边形),E.F.G.H分别是边AB.BC.CD.DA的中点.求证:四边形EFGH是(平行四边形).
连结AC向量EG=EH+HG根据中位线,可得向量HG=1/2AC向量EF=1/2AC即向量EF=HG向量EG=EH+EF四点共面
连接AC、BDH、G分别是AD、CD的中点,HG||ACE、F分别是AB、BC的中点,EF||AC故HG||EF同理,GF||BD,HE||BDGF||HE所以四边形EFGH是平行四边形.
连结AC向量EG=EH+HG根据中位线,可得向量HG=1/2AC向量EF=1/2AC即向量EF=HG向量EG=EH+EF四点共面
如图,连结AC,BDEFGH是平行四边形.由E,F,G,H分别是AB,BC,CD,DA的中点可知EF,FG,GH,EH分别是三角形ABC,BCD,CDA,ABD的中位线,由定理:三角形的中位线平行于三
连接AC,BD∵E,H,F,G是中点∴EH是△DAC的中位线∴EH//AC同理GF//AC∴GF//EH同理EF//HG∴四边形EHGF是平行四边形
第一题:因为AB=AD.所以角AFG=角AEH(等边对等角)所以EH=FG同位角第二题;AC=BD.因为AB=AD所以四边形ABCD是菱形、、(一组邻边相等的平行四边形是菱形)因为菱形的对角线相等所以
证明:1)因为:E、F、G、H分别是AB、BC、CD、AD的中点所以:EF//AC//GH所以:EF和GH共面所以:E、F、G、H共面2)因为:EF是△ABC的中位线所以:EF//AC同理:GH//A
证明:∵四边形ABCD是平行四边形,∴∠B=∠D,AB=CD,BC=AD.又∵E、F、G、H分别是平行四边形ABCD的四边中点,∴BE=DG,BF=DH.∴△BEF≌△DGH.
连AB'则EG⊥AB'AD⊥面AA'B'B即AD⊥EG∴EG⊥面AB'D∴EG⊥B'D同理可证EF⊥B'D∴B'D⊥面EFG
有以知条件可知AB=DCAD=BCAB//CDAD//BC由E,F,G,H是平行四边形ABCD四条边AB,BC,CD,DA的中点可知AE=BEAH=DHDG=CGCF=BF综上可得AH=DH=BF=C
2.连接OE∵E是BC的中点底面ABCD为正方形O为对角线交点∴OE//AB2OE=AB∵正方体ABCD-A'B'C'D∴NB'平行且=OE∴OEB‘N为平行四边形∴ON平行EB’所以ON平行面B'D
连接AC.因为E.F.G.H分别是AB,BC,CD,DA的中点所以根据中位线定理得:GH//AC,GH=1/2AC;EF//AC,EF=1/2AC即:EF//GH;且EF=GH所以四边形EFGH是平行
证明:连接BDEH是△ABD的中位线∴EH‖BD,EH=1/2BD同样FG是△BCD的中位线∴FG‖BD,FG=1/2BD所以:EH‖FG,EH=FG根据一组对边平行且相等的四边形是平行四边形得到:四
四边形EFGH是平行四边形理由:连接BD∵E,F,G,H分别是边AB,BC,CD,DA的中点∴EH,FG分别是中位线∴EH∥BD,EH=½BDFG∥BD,FG=½BD∴EH∥FG,
证明:连接BD∵E是AB中点,H是AD中点∴EH‖BD∵F是BC的中点,G是CD的中点∴FG‖BD∴EH‖FG
连接BD,(在三角形ADB中)因为E、H分别是AB、DA的中点,所以he平行db且等于二分之一db.,(在三角形cdb中)同理,可得cf平行db且等于二分之一db,根据对边平行且相等可得.
解题思路:找线线平行解题过程:.最终答案:略