正方形ABCD,DE垂直于AG,BF平行于DE,AB=4,BG=3,求EF的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:23:25
(1)证明:如图,∵正方形ABCD,∴AB=AD,∠BAD=∠BAG+∠EAD=90°,∵DE⊥AG,∴∠AED=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠AFB
证明:∠EDA=∠FAB∠EAD=∠FBAAD=AB∴ΔAED≌ΔBFABF=AEAE+EF=AF∴BF+EF=AFAF-BF=EF
由∠BAF+∠DAE=∠BAD=90°,而∠DAE+∠ADE=90°故∠BAF=∠ADE,又∠AFB=∠DEA=90°,且AB=AD故△AFB≌△DEA,因此AE=BF故AF=AE+EF=BF+EF
如图,设AB=1.则DE=√6, AF=√6/3取坐标系:D﹙0,0,0﹚ A﹙1,0,0﹚ C﹙0.1.0﹚,z轴向上,则E﹙0.0.√6﹚ F﹙
第一个不用我说了吧第二个三角AQF和三角ABG相似,所以AQ比AF=3比根号13,AF比AG=2比根号13,一乘就得到了第三个,显然AD比DP长,而若EF是2,那么边长就是6,所以AD就是六,AD>D
(1)证明:∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∠BAF+∠ABF=90°,则:∠BAF=ADE,∠ABF=∠DAE,因为ABCD是正方形,所以AB=AD,所以:△ABF≌△DAE
因为正方形ABCD,所以AB=AD,又因为DE,BF都垂直于AG,所以角DEA等于角BFA等于90度,又因为角DAE+角GAB=90度,角GAB+角ABF=90度,所以角ABF=角DAE,所以:△AB
证明:如图,∵正方形ABCD,∴AB=AD,∠BAD=∠BAG+∠EAD=90°,∵DE⊥AG,∴∠AED=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠AEB=∠A
(1)证明: ∵四边形ABCD是正方形,BF⊥AG,DE⊥AG ∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90° ∴∠BAF=∠ADE ∴△ABF≌△DAE ∴BF=AE,AF=
20∵四边形ABCD为正方形∴∠DAF=∠B=90°,AD=AB=BC∵DG⊥AE∴∠DGA=90°∴∠ADF+∠DAG=90°∵∠BAE+∠DAG=∠A=90°∴∠ADF=∠BAE在△ADF和△BA
EF+FG=DE=AF,三角形ABF全等于三角形ADE,所以AE=FG,EF+FG=EF+AE=AF
由∠CDE+∠ADE=90°,又∠FAD+∠ADE=90°,∠CDE=∠FAD,∴△CDE∽△FAD,∴AF/AD=CD/DE,AF/5=5/6,∴AF=25/6.
证明:如图,∵正方形ABCD,∴AB=AD,∠BAD=∠BAG+∠EAD=90°,∵DE⊥AG,∴∠AED=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠AFB=∠A
证明:(1)∵∠BAD=90°,DE⊥AG∴∠ADE+∠DAE=∠BAF+∠DAE=90°∴∠BAF=∠ADE∵AD=AB,∠AFB=∠AED=90°∴△ABF≌△DAE(2)线段EF与AF、BF的等
2)EF:GF=2,理由:△BGF∽△AGB∽△ABF, △ABF≌△DAEG为BC边中点, BG:AB=FG:BF=BF:AF=1:2,&nb
1)延长DE交AB于H∵DE⊥AG,BF//DE∴BF⊥AC,∠DAG=∠AHD∵AD∥BC==>∠DAG=∠AGB∴∠AGB=∠AHD,△BGF∽△DAE∴△AHD≌△GBA又∵G为BC边中点∴H为
证明:∵四边形ABCD是正方形∴BC=CD,∠BCF=∠DCE=90°∵CE=CF∴△BCF≌△DCE∴∠CBF=∠CDE∵∠CDE+∠E=90°∴∠CBF+∠E=90°∴∠BHE=90°∴BH⊥DE
神啊,你再看看题和图,确定没有错误吗?