正方形ABCD,点E是AB的中点,连接DE,在DE 上取一点G
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:46:36
这个很easy先证△ABF≌△DAE∵∠AFB=∠DEA又∵∠AFB+∠FAB=90∴∠DEA+∠FAB=90∴FA⊥DE
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
用换底法..累死了,偶简述可以不?三棱锥B1-BDE等同于三棱锥D-B1BE对于三棱锥D-B1BE底面积S△B1BE可求DC⊥△B1BE所在面则DC为高三棱锥体积可求然后求S△DEB根据已知的体积即可
证明:(Ⅰ)连接AC、AF、BF、EF、∵SA⊥平面ABCD∴AF为Rt△SAC斜边SC上的中线∴AF=12SC(2分)又∵ABCD是正方形∴CB⊥AB而由SA⊥平面ABCD,得CB⊥SA∴CB⊥平面
连接de,df,将三角形dae以D为旋转中心顺时针旋转90度,E落在BC延长线上H所以DE=DH,因为ae+cf=efae=ch所以ef=cf+ch即ef=fhde=dh,ef=fh,df=df三角形
延长EB到点G,使BG=DF,连接CG∵AE+EF+FA=2,正方形边长是1∴EF=2-AE-AF=(1-AE)+(1-AF)=BE+DF=EG易证△BCG≌△DCF可得CG=CF,∠BCG=∠DCF
“zyl9529”:答:DE=FG;BGEF的周长=4cm×2=8cm证明:延长FE交DC于H.AC是正方形ABCD的对角线,所以,AF=FE;;EG=EH;;EG⊥BC;;EF⊥AB;;所以FE=B
EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9
对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=
设CF和DE交于点O证明:∵AE=DFAD=DC∠EAD=∠FDC∴△EAD≌△FDC∴∠AED=∠DFC又∠ADE+∠AED=90°∴∠ADE+∠DFC=90°∴∠FOD=90°∴CF⊥DE
求证:EF⊥CD① 设O是ABCD中心,则FO∥SA﹙⊿SAC中位线﹚ ∴FO⊥CD 又EO⊥CD
SA=AB=BCBE=AE∠SAB=∠CBA=90°△SAE≌△CBESE=ECF是SC中点EF⊥SCEF⊥CDEF⊥面SCD:平面SCD⊥平面SCE
证明:延长CD到点P,使DP=AE;连接EP,交AD于QABCD为正方形,所以∠PDQ=∠EAQ=90∠PQD=∠AQEDP=AE所以△PDQ≌△EAQ,AQ=DQAD=CD,AE=DPCE=AD+A
(1)证明:∵∠DEF=45°,∴∠DFE=90°-∠DEF=45°.∴∠DFE=∠DEF.∴DE=DF.又∵AD=DC,∴AE=FC.∵AB是圆B的半径,AD⊥AB,∴AD切圆B于点A.同理:CD切
连接DE,交AC于点P,连接BD∵点B与点D关于AC对称∴DE的长即为PE+PB的最小值∵AB=4,E是BC的中点∴CE=2在Rt△CDE中DE=√(CD^2+CE^2)=√(4^2+2^2)=2√5
由三角形BCE和CDF全等得角FCE=CBE,CBE+BEC=90度,所以FCE+BEC=90度,得角BPC=90度延长CF、BA交予点G,则AG=CD=AB,而角BPG=90度,即PA是斜边上中线.
第一问是错的吧?应该是求证△ABE相似于△DFA吧?①∵∠B=90°,DF⊥AE,∠DAF=∠AEB,∴的证②∵AB=2,E是中点,所以S△ABE=1,∴S△ADF=4/5,S四边形=11/5