正方形ABCD,点E是BC边上动点,F是CD上一点,且CE=DF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:33:50
(1)证明:如图,∵正方形ABCD,∴AB=AD,∠BAD=∠BAG+∠EAD=90°,∵DE⊥AG,∴∠AED=90°,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠AFB
AE⊥BF则∠AMB=90°∠ABM+∠BAE=90°∠ABM+∠FBC=90°所以∠BAE=∠FBC在rt△BCF和RT△ABE中∠BAE=∠FBC∠BCF=∠EBA=90°正方形ABCD则AB=B
连接AE∵AD∥CE∴△ADF∽△CEF∴S△ADF∶S△CEF=(AB∶CE)^2=(2∶1)^2=4∶1∴S△ADF=4S△CEF而S△AEF∶S△CEF=AF∶CF=AB∶CE=2∶1(两个三角
1:延长EF交正方形外交平分线CP于点P,是判断AE与EP的大小关系,并说明理由\x0d2:在AB边上是否存在有一点M,使得四边形DMEP是平行四边形,若存在,请证明,若不存在,请说明理由各位速度
1可以设正方形边长为a,BE=b,所以易得EG=2a-b.HG=√3a.所以要证2a-b=√3a两边平方得a2+b2=4ab设正三角形边长c.a2+b2=c2.由又三角形ECF知2(a-b)2=c2所
很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形
,在AB上取BM=BE,连接EM,∵ABCD为正方形,∴AB=BC,∵BE=BM,∴AM=EC,∵∠1=∠2,∠AME=∠ECP=135°,∴△AME≌△ECP,∴AE=EP;(3)存在.顺次连接DM
(1)AE=EP.证明:设AB=X,BE=Y,则EC=X-Y.作PG垂直BC的延长线于G,易知PG=CG,设∠BAE+∠AEB=90°=∠AEB+∠PEC,则:∠BAE=∠PEC;又∠B=∠PGE=9
初四的开玩笑啊1)X=Y(4-Y)
1)CF=CE=X,BE=4-XS△AEF=S正方形-S△ABE-S△CEF-S△ADF=16-1/2[2*4*(4-X)+X*X]=-x^2/2+4xy=-x^2/2+4x,0
S3=S2+S7+S8.理由:如图,图中S3的面积S3=SABCD-S△ABE-S△BCF-S△CDE-S△ADF+S2+S7+S8化简得S3=BC•CD-12×(BE+EC)×CD-12×(DF+F
证明:在CB的延长线上取点G,使BG=DF,连接AG∵正方形ABCD∴AB=AD,∠ABG=∠ADC=90∵BG=DF∴△ABG≌△ADF(SAS)∴∠G=∠AFD,∠BAG=∠DAF∵AF平分∠DA
(1)当CF=4时,由切线的判定定理可知,AD,BC均是半圆的切线,故FB=FM,AE=EM.设AE=EM=X,过E作BC边上的高,由勾股定理可列:(X-2)^2+6^2=(2+X)^2解得:X=4,
这题不难,这里正方形边长看成n(注意不要看成1,计算方便),在此时解这题的关键就是求出正方形MNPQ面积由题有:AE=BF=CG=DH=1,多边形MNPQ和多边形ABCD均为正方形.∵BN是直角三角形
证明:(1)∵∠BAD=90°,DE⊥AG∴∠ADE+∠DAE=∠BAF+∠DAE=90°∴∠BAF=∠ADE∵AD=AB,∠AFB=∠AED=90°∴△ABF≌△DAE(2)线段EF与AF、BF的等
证明:因为四边形ABCD是正方形所以角BAG+角DAG=90度,AB=AD又因为BF垂直AG,DE垂直AG所以角ABF+角BAF=90度,角ADE+角DAE=90度所以角BAG=角ADE,角ABF=角
∵正方形面积为3,∴AB=√3在△BGE与△ABE中, ∵∠GBE=∠BAE, ∠EGB=∠EBA=900∴△BGE∽△ABE &nb
辅助线:延长CB到G,使BG=DF∵正方形ABCD,AB=AD,AB⊥BC,AD⊥DC∴△ABG全等于△ADF∴∠GAB=∠FAD,∠AGB=∠AFD∵AF平分角EAD∴∠GAB=∠FAE∵AB‖CD
自己做,即使我做过.学习为自己的