正方形abcd中 f为CD中点,BE=3CE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:31:13
在正方形ABCD中,E是BC的中点,F为CD上一点,且CF=14CD,试判断△AEF是否是直角三角形?试

设正方形的边长为4a,∵E是BC的中点,CF=14CD,∴CF=a,DF=3a,CE=BE=2a.由勾股定理得:AF2=AD2+DF2=16a2+9a2=25a2,EF2=CE2+CF2=4a2+a2

正方形ABCD,点E为BC中点,点F在CD上

解题思路:首先延长EB至H,使BH=DF,连接AH,证得△ADF≌△ABH,得出∠BAH=∠DAF,AF=AH,进一步得出△FAE≌△HAE,得出∠H=∠AFE,设BH为x,正方形的边长为a,在直角三

如图,在正方形ABCD中,E为CD的中点,F为BC上的一点,且CF=1/4BC,试说明:AE垂直EF

因为在正方形ABCD中,E为CD中点,所以DE=EC=1/2AD因为CF=1/4BC,且BC=AD,所以CF=1/2CE因为角D=角C=90度所以直角三角形ADE相似于直角三角形ECF所以角DAE=角

已知:如图,在正方形ABCD中,E.F分别为BC,CD的中点.求证:AE=AF

∵ABCD是正方形∴AD=AB=CD=BC∠D=∠B=90°∵E.F分别为BC,CD的中点.∴BE=1/2BC=1/2ABDF=1/2CD=1/2AB∴BE=DF在Rt△ABE和Rt△ADF中AB=A

在正方形ABCD中,E为BC的中点,F在CD上,且AF=BC+CF

连FE交AB的延长线与G,因为BE=EC,角EBG和角ECF都是直角,易证三角形EBG全等于三角形ECF,即GE=EF,BG=CF,则AF=CF+BC=AB+BG=AG,三角形AFG是等腰三角形,又G

如图在正方形ABCD中,F为CD的中点,E为BC上的一点,且EC=四分之一BC 求证∠AFE=90°

只要证明三角形ECF相似于三角形FDA就行了我记得是不是有个定理,对应边成比例,对应角相等的三角形就是相似三角形啊!因为EC=1/4BC,BC=CD=AD,DF=1/2CD所以,EC/FD=CF/AD

正方形ABCD中,E为CD中点 F为CD上一点 且AF=BC+CF求证 角BAF=2角EAD

取BC中点K延长FK交AB于M易证三角形BMK全等于三角形CFK所以AF=BC+CF=AB+BM=AM又因为K是FM中点所以角BAF=2角KAB另一方面因为AB=ADBK=DE角ABK=角ADE所以三

正方形ABCD中,M为AD中点,F为CD中点,连接BM,AF.能说明AF与BM垂直吗?依据是什么,用什么定理

能,先用SAS证明△ABM≌△AFD所以∠AMB=∠AFD因为∠DAF+∠AFD=90度所以∠DAF+∠AMB=90度所以AF与BM的夹角为90度,所以AF与MB垂直

如图,在正方形ABCD中.E是BC的中点,F为CD上的一点,且CF=¼CD.求证:△AFE是直角三角形【勾股定

证明:设正方形的边长为4K∵正方形ABCD,边长为4K∴∠B=∠C=∠D=90,AB=BC=CD=AD=4K∵E是BC的中点∴BE=CE=2K∴AE²=AB²+BE²=1

如图,在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=1/4BC.求证:AE⊥EF.

连接AF设AB=AD=BC=CD=4∴E为CD的中点DE=CE=1/2CD=2∵CF=1/4BC=1∴BF=3∴勾股定理:AE²=AD²+DE²=4²+2

如图,在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=?BC,试说明AE⊥EF.

在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=(1/4)BC,试说明AE⊥EF.因为,在△ADE和△ECF中,∠ADE=90°=∠ECF,AD/DE=2=EC/CF,所以,△ADE∽△E

在边长为2的正方形ABCD中,点E是AD的中点,点F为CD上一点,EF垂直BE.求证:DEF相似于EBF

∵EF⊥BE∴∠DEF=180°-90°-∠AEB=∠ABE∴直角三角形△ABE∽△DEF∵点E是AD的中点∴AE:AB=DF:DE=1:2∵BE^2=AE^2+AB^2=5,EF^2=ED^2+DF

如图,在正方形ABCD中,E为BC的中点,F在CD上,且CF=1/4CD,△AEF是直角三角形吗?为什

(我这个回答近仅限于选择题)用特殊值法,设这个正方形的边长为4,则BC长2,CE长2,CF长1,DF长3,在RT三角形ABE中,有勾股定理得AB的平方加BE的平方等于AE的平方等于20(当然也可以是根

已知:如图,在正方形ABCD中,E为BC中点,F为CD上一点,AE平分∠BAF.

证明:过中点E作EM∥AB,交AF于M.则AM=MF,且∠1=∠2=∠3.∴EM=AM=12AF∵EM=12(AB+CF),∴AF=AB+CF.

如图,在正方形ABCD中,F为CD的中点,E为BC上一点,且EC=1/4 BC,求证:角EFA=90度

EC:FC=DF:AD=1:2△ECF∽△FDA∠EFC=∠FAD∠EFC+∠AFD=90∴∠EFA=90度

在正方形ABCD中,F为CD的中点,E为BC上一点,且CE=四分之一BC,则角AFE是直角吗?

角AFE是直角证明:设正方形边长为x则:AE平方=AB平方+BE平方,即AE平方=x平方+(3/4)*x平方又:AF平方=AD平方+DF平方,即AF平方=x平方+(x/2)平方EF平方=CF平方+CE

如图,正方形ABCD中 E为AB中点 AF、DE交于F、G 求证CG=CD

因为E是AB中点,则DE肯定是固定不变的,∠EDC也是固定不变的.如果结论是正确的,则∠GCD肯定也是固定不变的.那么,G点也是固定不变的.同理的,AF也是固定不变的,F应该是一个特殊的点.但是,在题