正方形ABCD中,MN分别是AB,BC边上的点,且BM= BN

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:42:56
已知 ,边长为1的正方形ABCD中,M,N分别是BC,CD上的点.若MN=BM+ND.(1)若MN=BM+ND,求证∠M

把⊿ABM绕A逆时针旋转90º,到达⊿ADG. AM=AG,   MN=BM+DN=GN   ,AN=AN &

如图,正方形ABCD中,EF,MN分别是两组对边所截得的线段,求证:若EF⊥MN,则EF=MN

证明:因为  ABCD是正方形   所以 AB=BC,   角A=角ABC=90度   作BH//EF,  CG//MN 

如图,正方形ABCD中,EF,MN,分别是两组对边所截得的线段,求证;若EF垂直MN,则EF等于MN

如图所示:分别过E、M作BC、AB的垂线交于E1、M1,则因MM1=EE1,∠NMM1=∠FEE1,故△MM1N≌EE1F.于是有,EF=MN.证毕.(抱歉,所画图考不上,而且字母的下标也都不承认!)

如图,正方形ABCD的边长为4,MN∥BC分别交AB,CD于点M、N,在MN上任取两点P、Q,那么图中阴影部分的面积是_

根据题意可得:阴影部分的面积即是正方形的面积的一半,因为正方形的边长为4,则正方形的面积是16,所以阴影部分的面积是8.故答案为8.

如图,在正方形ABCD-A1B1C1D1中,M,N分别是A1B,BC1的中点.1.求证:MN∥平面ABCD 2.求证:A

证明(1)连接A1C1∵M是A1B中点,N是BC1中点∴MN//A1C1∵A1C1在面A1B1C1D1内∴MN//平面A1B1C1D1∵正方体∴面A1B1C1D1//面ABCDMN不在面ABCD内∴M

在正方形ABCD中 点E是AD上一个动点 MN垂直AB分别交AB,CD于MN 连结BE交MN于点O,过点O作OP垂直BE

建议以后提问完还是要检查一下题目是否发完整,否则是不可能得到解答的.

正方形ABCD-A1B1C1D1中,M ,N分别是A1B和AC上的点,A1M=AN,求证:MN//平面BB1C1C

连接BD、A1D、B1C依题意可知N为BD的中点,A1D//B1C所以MN是三角形A1BD的中位线,得MN//A1D所以MN平行B1C,所以MN//平面BB1C1C再问:...

如图,在正方形ABCD中,MN分别是边CD、DA的中点,则sin∠MBN的值是

连接MA交NB为O设正方形的边长为2,MO=y∴AD=MP=1∴△PAM和△ABD全等∴DB垂直MA又∵角DAO等于角ABO∴△ODA与△ABD相似又∵BD=(2²+1&su

在正方形ABCD中,点E是AD上一动点,MN⊥AB分别交AB,CD于M,N,连接BE交MN于点O,过O作OP⊥BE分别交

(1)如图①结论:AE=MP+NQ.(2分)证明:过Q作QQ'⊥AB于Q',则∠MQ′Q=90°,∵MN⊥AB,∴∠AMN=90°,∵四边形ABCD为正方形,∴∠BAD=∠ADC=90°,∴四边形AM

在正方形ABCD中,点E是AD上一动点,MN⊥AB分别交AB,CD于M,N,连接BE交MN于点O,过O作OP⊥BE分别交

本题几问辅助线做法以及证明方法类似,都是利用原题中的正方形和垂直再作垂线后用三角形全等证出来.简单分析如下:(1)过点P作PF⊥CD于F,则MP=NF,由△PFQ≌△BAE得AE=QF=NF+NQ=M

如图 正方形abcd边长为2 m n分别是bc cd的两个动点 且在运动过程中 始终保AM⊥MN

证明:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠CMN=∠M

在空间四边形ABCD中,点M.N分别是AD.BC的中点,AC=BD=2a,MN=根号2,求MN与AC

(1)找DC边上的中点F,连接NF、MF.AC//MF,NF//BDMN与AC所成的角为角NMF,MN=根号2,MF=NF=a,则角NMF=arccos根号2/2a(2)AC与BD所成的角AC//MF

正方形ABCD中,M,N分别在BC,CD上,已知BM+DN=MN,求

⊿ABM绕A逆时针旋转90º,到达⊿ADG,GN=BM+DN=MN  ∴⊿ANM≌⊿ANG(SSS)∠NAM=∠NAG,  ∠MAG=∠MAD

如图,在正方形ABCD中,AC、BD相较于O,M、N分别是OA、OB上的两点,且MN‖AB,求证:BM=CN

证明:∵四边形ABCD是正方形∴OA=OB,∠BAM=∠CBN=45°∵MN‖AB∴OM=ON∴AM=BN∵AB=BC∴△ABM≌△CBN∴BM=CN

已知在正方形ABCD中,AC,BD相交于点O,M,N分别是OA,OB上的点,且MN‖AB

第一问用三角形全等证根据正方形的性质可知OA=OB=OC,AC⊥BD∵MN‖AB∴OM=ON又∵OB=OC,∠MOB=∠NOC∴△MOB≌△NOC∴BM=CN第二问延长CN交BM于点E∵△MOB≌△N

在正方形ABCD中,点E是AD上一动点,MN⊥AB分别交AB、CD于M、N,连接BE交MN于点O,过O作OP⊥BE分别交

(1)AE=MP+NQ证明:过P作PF‖AD交CD于F∵AB‖CD,MN‖AD∴PF‖MN‖AD∴四边形PMNF为平行四边形∴PM=FN,PM+NQ=FQ,PF=AD=AB,∠MNC=∠BMN=90°

在正方形ABCD中,若P,Q,M,N是正方形ABCD各边上的点,PQ与MN相交,且PQ=MN,证PQ垂直MN

设P在AB上,Q在CD上,M在BC上,N在AD上,且PQ=MN.过A作AE‖PQ交CD于E,过D作DF‖MN交BC于F,∴AE=PQ,DF=MN,得AE=DF,由AD=CD,∴△ADE≌△DCF(H,

如图,正方形ABCD中,ENFM分别是各边上的点,EF垂直MN,求证MN=EF

证明:设点E在BC上,点N在CD上,点F在DA上,点M在AB上.又设EF与MN的交点为P过点F作FS⊥BC,交BC于点S;过点N作NT⊥AB,交AB于点T.因为∠B=90°,∠MPE=90°所以∠BM