正方形ABCD中,点MN 分别在BC CD上,且角MAN=45度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:54:41
AE等于EB△AED中AD/AE=2要使△AED与△MNC相似则MC/CN=2或者CN/CM=2因为MN=1则根据勾股定理可得直角边应该为(根号5)/5和2*(根号5)/5则满足条件的MC为(根号5)
根据题意可得:阴影部分的面积即是正方形的面积的一半,因为正方形的边长为4,则正方形的面积是16,所以阴影部分的面积是8.故答案为8.
将三角形DCN绕点D顺时针旋转,使得CD与AD重合.设点N的新位置为点P.因为角A+角C=180度,所以P在直线AB上.三角形DMN与三角形DMP全等(三边对应相等),所以角MDN是角ADC的一半.(
建议以后提问完还是要检查一下题目是否发完整,否则是不可能得到解答的.
(1)如图①结论:AE=MP+NQ.(2分)证明:过Q作QQ'⊥AB于Q',则∠MQ′Q=90°,∵MN⊥AB,∴∠AMN=90°,∵四边形ABCD为正方形,∴∠BAD=∠ADC=90°,∴四边形AM
本题几问辅助线做法以及证明方法类似,都是利用原题中的正方形和垂直再作垂线后用三角形全等证出来.简单分析如下:(1)过点P作PF⊥CD于F,则MP=NF,由△PFQ≌△BAE得AE=QF=NF+NQ=M
那个回答人的意思是假设他们是对应点,但是这也符合实际啊,相当于你把正方形OEFG平移上去,使得F与O点重合,这样再一观察,他们就是对应点啦,当然这只是假设,还有就是他做的那个M点,因为可以证明出△ME
证明:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠CMN+∠AMB=90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠CMN=∠M
⊿ABM绕A逆时针旋转90º,到达⊿ADG,GN=BM+DN=MN ∴⊿ANM≌⊿ANG(SSS)∠NAM=∠NAG, ∠MAG=∠MAD
设AE=a,BE=b,那么S1=a^2+b^2,S2=2ab,S1-S2=(a-b)^2
第一问用三角形全等证根据正方形的性质可知OA=OB=OC,AC⊥BD∵MN‖AB∴OM=ON又∵OB=OC,∠MOB=∠NOC∴△MOB≌△NOC∴BM=CN第二问延长CN交BM于点E∵△MOB≌△N
在正方形ABCD中AD=AB=4,∠A=∠B=90°∵AM=1,BN=0.75∴BM=3∴AD/AM=BM/BN=4∴⊿ADM∽⊿BMN∴∠ADM=∠BMN∵∠ADM+∠AMD=90°∴∠BMN+∠A
(1)AE=MP+NQ证明:过P作PF‖AD交CD于F∵AB‖CD,MN‖AD∴PF‖MN‖AD∴四边形PMNF为平行四边形∴PM=FN,PM+NQ=FQ,PF=AD=AB,∠MNC=∠BMN=90°
设P在AB上,Q在CD上,M在BC上,N在AD上,且PQ=MN.过A作AE‖PQ交CD于E,过D作DF‖MN交BC于F,∴AE=PQ,DF=MN,得AE=DF,由AD=CD,∴△ADE≌△DCF(H,
因为∠MCB是公共角 ∠MPB=∠MBC=90°∴△MBC∽△BPC得BP:PC=MB:BC=BN:DC,又∠MBP=∠BCP∴△PDC∽△PNB∴∠PDC=∠PNB,∴∠PNC
证明:设点E在BC上,点N在CD上,点F在DA上,点M在AB上.又设EF与MN的交点为P过点F作FS⊥BC,交BC于点S;过点N作NT⊥AB,交AB于点T.因为∠B=90°,∠MPE=90°所以∠BM
学习一下思路切来的(2012•鸡西)如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN(1)如图2,在梯形ABCD中,BC∥AD,AB=BC=