正方形ABCD内接于圆O,P在AB弧上,求证PD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:00:49
证明:根据定理“三角形任一外角等于不相邻两个内角的和”可得:∠AEF=∠B+∠BPE∠DFE=∠PDF+∠APE因为EP是∠APB的平分线所以∠APE=∠BPE因为∠B=∠PDF(圆内接四边形外角等于
点O为底面ABCD的中心,以O为圆心、1为半径作圆,若点P取在圆O内,则P到O的距离小于等于1,若在正方形的其他区域内取点P,则P到O的距离大于1.计算概率时可用圆与正方形的面积.因此,P到O的距离大
∵四边形ABCD内接于圆O∴∠DCB+∠DAB=180°又∠PAD+∠DAB=180°∴∠PAD=∠DCB①∵DP//CA∴∠APD=∠BAC②又∠BAC=∠CDB③(等弧所对相等)由②③可得∠APD
AF=(2/3)a先求出PA的长,可设PA的长为未知数X,利用勾股定理表示出PB,PC,由PB乘以BC等于PC乘以BE,可求出PA,由PA求出PC,再由BC的平方等于CE乘以CP,求出CE,CE是CP
设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r-m.在⊙O中,根据相交弦定理(圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等),得QAQC=QPQD.即(r-m)(r+
当QP=QD时,点P与B重合,点Q与O重合.此时,QC/QA=OC/OA=1.再问:不好意思,题目打错了,在帮下忙吧再答:解:连接PB,DB;连接OP,BQ,OP交BQ于M.∠ABC=90°,则DB为
如图,EF是⊿ACD的中位线,OP=OD/2=6. MN=2PM=2√(12²-6²)=12√3.PB=18.MB=NB=√[18²+(
如图,设⊙O的半径为r,QO=m,则QP=m,QC=r+m,QA=r-m.在⊙O中,根据相交弦定理,得QA•QC=QP•QD.即(r-m)(r+m)=m•QD,所以QD=r2−m2m.连接DO,由勾股
如图,AD中点O即半圆的圆心,作辅助线,OE、OC、OF因为E在半圆上,所以OE=OD=2E也在四分之一圆上,所以EC=DC=4加上公共边OC马上我们就可以知道△ODE和△OCE是全等的直角三角形(S
对于正方形“内接于”圆,说明是在圆的内部,“外切于”圆,说明是在圆的外部;对于圆“内切于”正方形,说明在正方形内部;“外接于”正方形,说明在正方形外部.四边形内接于圆,等同于,圆外接于四边形,圆内切于
连结OE、OF可得四边形OEDF为正方形,连结OD交EF于G,则OG=1/2OD=6.连结OM,在Rt△OGM中,OM=12,OG=6,由勾股定理得MG=6倍根号下3,再由垂径定理可求得MN=2MG=
igxiong008是对的~
1、此概率=正方形面积除以圆面面积2、正方形面积=AD*CD3、AD平方+CD平方=2分米的平方,所以AD=CD=根号2分米,所以AD*CD=根号2*根号2=2平方分米4、圆的面积=πR平方=π*1的
正方形内切圆的半径为正方形边长的一半,即:r=2/2=1,圆内接正三角形的中心点是外心,也是重心,所以中线长的三分之二等于圆的半径,即正三角形的中线长为:1/(2/3)=3/2,则正三角形EFG的边长
设角PAB=X则角PBC=90度-X因为角PAB+角PDC=1/2角AOD=1/2*90=45度得角PDC=45度-角PAB=45度-X所以角PCB=90度-角PDC=90度-45度+X=45度+X由
设正方形边长为2r,取正方形中点,以平行正方形两边做坐标系,则圆的方程就是x2+y2=r2,任何一点P的表达式是(rcosA,rsinA).正方形四点可以表示成(士r,士r)然后就可以直接算出PA,P
如图,作PF‖BC,EG⊥BC,则EF=FP(∵⊿EFP∽⊿EBC,BE=BC),PR=EH(等腰等高)EG=EH+HG=PR+PQ=4. BC=BE=4√2.正方形边长为4√2
此题要把图画对就行了两个圆是内切的,小圆在大圆内,这样就很简单了设大圆的圆心为M点,连接MA,MD,延长PQM与AB交于E,设AB=2a(正方形的边长),在直角三角形MAE中,AM^2=ME^2+AE
设大圆的圆心为M点,连接MA,MD,延长PQM与AB交于E;设AB=2a(正方形的边长),在直角三角形MAE中,∵小圆在正方形的外部且与CD切于点Q.∴PQ⊥CD,∵CD∥AB,∴PE⊥AB,∴AE=
连接OA,∵两圆内切,∴P、Q、O共线,设过P、Q、O的直线交AB于R,AB=x,则OQ=OP-PQ=10,RO=RQ-OQ=x-10,(2分)∵CD与小圆切于点Q,∴QR⊥CD,QR⊥AB,∴根据垂