正方形abcd是正方形 e f分别是AB.BC边上的点 且角

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:58:46
四边形ABCD是正方形,EF分别是AD,DC上的一点,且角EBF=角GBF,GC=AE求证:EF=CD+AE

这个题缺了一个条件,就是G在DC的延长线上这样,可以这么做:易证AEB与CGB全等,进而EFB与GFB全等,于是EF=FG=FC+CG=FC+AE得证!

如图,正方形ABCD中,点E,F分别是BC,DC边上的点,且AE垂直于EF

1:延长EF交正方形外交平分线CP于点P,是判断AE与EP的大小关系,并说明理由\x0d2:在AB边上是否存在有一点M,使得四边形DMEP是平行四边形,若存在,请证明,若不存在,请说明理由各位速度

PA垂直平面ABCD,ABCD为正方形,∠PAD=90度,且PA=AD,E.F分别是线段PA.CD的中点.求异面直线EF

说实话,这个题目没有图是不能做的,但我在网络上帮你找了一个应该是一样的题目,1.取BC中点G,连接FG,EG,则有FG‖PB,EG‖AB,由正方形各边长以及PA的长很容易求出AC=2√2,PC=2√3

已知E,F分别是正方形ABCD边AD,AB的中点,EF交AC于M,GC垂直于ABCD所在的平面

(1)证明:∵GC⊥ABCD∴GC⊥EF∵ABCD是正方形∴BD⊥AC∵EF//BD∴EF⊥AM故EF⊥面GMC(2)建立空间直角坐标系C-xyz则G(0,0,2)E(4,2,0)F(2,4,0)∴向

如下图.abcd是正方形ef分别是ad,cd的中心点阴影部分占正方形的几分之几?

∵没有图,我只能假设阴影是那一部分了,如下两种情况:①阴影如果是△EDF,则:阴影部分占正方形的八分之一.②阴影如果是五边形ABCFE,则:阴影部分占正方形的八分之七.

已知,如图所示,正方形ABCD,E、M、F、N分别是AD、AB、BC、CD上的点,若EF⊥MN,求证:EF=MN.

证明:如图,过点E作EG⊥BC于G,过点M作MH⊥CD于H,∵四边形ABCD是正方形,∴EG=MH,EG⊥MH,∴∠1+∠3=90°,∵EF⊥MN,∴∠2+∠3=90°,∴∠1=∠2,∵在△EFG和△

一个正方形ABCD,已知E,H,F,G分别是ABCD四条线段的中点,连接EFGH,EF=7厘米求大正方形的面积

7x7=4949除以2=24.524.5x4=98正方型面积等于对角线乘积的一半再问:什么意思???????再答:菱形面积等于对角线乘积的一半正方形属于特殊的菱形我想知道你的图形嘿嘿

正方体abcd边长为2.e,f分别是ab cd的中点,将正方形沿ef折成二面角

这个画图太难了.你自己去看吧,应该是在学身影那里学的.有这样一个性质,共点的三条射线,若其中一条与另外两条的夹角相等,那么,这一条在另两条所确定的平面内的身影是另两条线的角平分线.还不清楚的话,可以问

在正方形ABCD-A1B1C1D1中,E、F分别是A1D,AC上的点,且EF⊥A1D,EF⊥AC,求证EF平行于BD1

连接CB1,AB1CB1//DA1,EF⊥A1D,那么EF⊥CB1,EF⊥AC所以EF⊥ACB1很容易证DD1B⊥AC,则AC⊥BD1,同理AB1⊥BD1,所以BD1⊥ACB1所以EF//BD1

如下图,ABCD是正方形,EF分别是AD.CD的中点,涂色部分面积占正方形的几分之几?

连接BD,因为CF=DF,所以S△BDF=S△BCF.同理,S△BAE=S△BDE所以阴影面积是正方形的一半

已知ef分别是正方形ABCD 的边AB和CD中点,沿EF把正方形折成一个直二面角

取BE中点G,DF中点H,EF中点M连接GM,MH,GH∴MH//=1/2DE,MG//=1/2BF∴异面直线BF,DE所成角是∠GMH的补角设原正方形边长=4∴BF=DE=2√5∴MH=GM=√5∵

EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交于点O,以EF为棱将正方形折成直二面角

题目不全啊再问:EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交于点O,,以EF为棱将正方形折成直二面角,求角BOD的度数再问:EF分别是正方形ABCD的边AB和CD的中点,EF,BD相交

ef分别是正方形abcd的边cd.da上一点放且ce+af=ef,请你用旋转的方法求角ebf的大小

将三角形ABF绕B顺时针旋转,使E与F重合.将三角形EBC绕B逆时针旋转,使F与E重合.aeaf=ce.所以角ebf=角abfebc=1/290度=45度再问:aeaf=ce是什么意思啊再答:对不起哈

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2

在正方形ABCD中,EF分别是CD,AD的中点,BE与CF相交于点P,若AP=18,求正方形ABCD的面积

图你自己画吧,由P向AB,BC,CD,AD作垂线,垂点分别为S,R,Q,T.由定理知,PQ/BC=EQ/EC,PQ/FD=CQ/CD,又因为CD=BC=2FD2EC,EQ=EC-CQ,化简可得4EC=

如图,正方形ABCD中,ENFM分别是各边上的点,EF垂直MN,求证MN=EF

证明:设点E在BC上,点N在CD上,点F在DA上,点M在AB上.又设EF与MN的交点为P过点F作FS⊥BC,交BC于点S;过点N作NT⊥AB,交AB于点T.因为∠B=90°,∠MPE=90°所以∠BM