正方形abcd边长为4,又知AE=5cm,那么DF的长是多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:12:51
两组解当abcd从x轴顺时针旋转30°时,b(2*根号3,2),c(2-2*根号3,2+2*根号3),d(-2,2*根号3)当abcd从x轴逆时针旋转30°时,b(-2*根号3,2),c(2+2*根号
解题思路:利用等腰三角形性质解题过程:见附件最终答案:略
(π(派)-2)/2
“w472”:正方形的面积=a²空白的半圆部份面积=(0.5a)²×3.14÷2=0.3925a²空白的三角形部份面积=a²-a²×3.14÷4=a&
中间面积为a正方形边长为X,又AB=CD,∴2X+10=3X+2X=8,X+6=14d-中间=14×14-4=192.即最大正方形与最小正方形的面积之差=196-4=192.
4×4×3.14×1/4×2-4×4×1/2×2=9.12(1)4×4×3.14×1/4把C点看作圆心,以它为圆心画了一个1/4圆,这一步求的这个1/4圆的面积,因为以A点为圆心也画了一个这样的圆,所
由△ADG面积为既是S正方形的一半又是长方形的一半,又S△ADG=4*4/2=8.故,长方形的长为8*2/5=3.2
如图:由将阴影部分划分为4个全等部分的每个面积=14×(正方形ABCD的面积-正方形DEFG的面积)=316a2,即3个小正方形的面积.
如果你还没有立体的概念,那你只要延长fa到hc上交于点o,则高为fo=(af+ao),s=(ef+hc)fo/2.如果这是立体图形,每一种bad角都对应有一个面积范围,没有固定值,但能求出最大和最小值
(1)梯形ADGF的面积=12(GF+AD)×GD=12(a+b)•a=a(a+b)2(2)三角形AEF的面积=12×AE•EF=a(b-a)2(3)三角形AFC的面积=S□ABCD+S□AFGD-S
1、P、Q相遇,说明两点走的路程相加是正方形的周长.即t+4*t=16,t=3.2s2、一次相遇是走过了一个正方形周长,4次相遇就是4个正方形的周长.即(1+a)*16=4*16,a=33、第2013
晕可以将oc连接,看不是分割成两部分了吗?由于o是正方形ABCD的对角线交点,设oe交bc于h,og交cd于j,obh等于ocj,那么图中阴影部等于三角形obc(即正方形ABCD的4分之一)啊懂了吧?
(1)AC1=AA1+A1B1+B1C1平方得,AC1^2=b^2+2a^2+2(-1/2*ab*2)=b^2+2a^2-2ab,再开方即得AC1的长(2)AC=AB+BC,D1B=D1A+A1B1+
设小正方形的x则面积S1=(1/2)*4a*(4a-x)=8a²-2ax面积S2=(1/2)*x²=(1/2)x²面积S2=(1/2)*4a*(4a+x)=8a²
如图,⑴ E.F是CD,DA的中点,A1D⊥D1D FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1
如图,连结DE,由于三角形ABE和三角形ECD的两底和是正方形的边长,高也是正方形的边长,所以三角形ABE的面积+三角形ECD的面积=(BE+EC)×AB÷2=4×4÷2=8(cm2),所以三角形DA
这样的正方形ABCD有无限多个.(a,b可以取任何实数值!)
S扇BAD=1/4πR^2=1/4X4X4X3.14=12.56S阴影BCD=S正-S扇=16-12.56=3.44两个半圆的面积就是以2为半径的圆的面积,然后把圆的面积加上3.44就行了
左边梯形ABCG面积为3/4a^2右边三角形GCE面积1/8a^2三角形ABE面积3/4a^2所以,阴影面积为1/8a^2