正方形在对角线ac上取点e,cd=ce,过点e作ef垂直ac

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:23:40
TAT马上要交了如图一,在边长为8√2cm的正方形ABCD中,E、F是对角线AC上的两个动点,他们分别从点A,点C同时出

(1)连接DB交AC于O,过E作EI垂直AB于I.因为ABCD边长为8√2cm的正方形,所以AC=√2*(8√2)=16cm因为E、F的速度是1cm/s所以X(最大值)=16/1=16s所以X的范围:

如图4 在正方形ABCD中 AC为对角线 E为AC上一点连接EB ED

证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°.又EC=EC,∴△BEC≌△DEC.(2)由(1)可知:△BEC≌△DEC∴∠BEC=∠DEC=1/2∠BED=70°∴∠AE

如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,P是边长为1的正方形ABCD 对角线AC上一动点(P与A、C不重 合),点E在射线BC上,且P

正方形对角线与边夹角45°,等腰三角形PEB的高为1-x/根号2,底边长为2乘以根号2乘以X面积为相乘除2.X大于0小于根号2X=根号2/2时最大

在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.

(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°.∴在△BEC与△DEC中,BC=CD∠ECB=∠ECDEC=EC∴△BEC≌△DEC(SAS).(2)∵△BEC≌△DE

已知点E、F在正方形ABCD的对角线AC上,AE等于CF,求证四边形BFDE是菱形

正方形可知AB=BC=CD=AD∠BAC=∠DAC=∠BCA=∠DCA=45°又有题知AE=CF有边角边SAS可知△ABE=△BCF=△CFD=△AED所以BF=FD=DE=EB四条边都相等的四边形为

已知点E、F在正方形ABCD的对角线AC上,且AE=CF.求证:四边形BFDE是菱形.

∵四边形ABCD是正方形∴AD=BC∵AC是对角线∴∠DAC等于∠ACB∵AE=CF∴△ADE≌BFC∴BF=ED以此类推证出EB=BF=DF=ED∴四边形BFDE是菱形

已知 如图 在正方形ABCD中,对角线AC,BD相交于点O,E是AB

好评给我把再答:再问:答案拿来再答:发了再问:采纳了

正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,则PD+PE的最小值为

因为ABCD是正方形,所以D跟B关于AC对称.所以BP等于DP.所以PEPD=PEBP.要使PEBP最小.即B,P,E三点共线.PEBP=BE=AB=4,所以PEPD的最小值为4.

在正方形ABCD中,点E在对角线AC上,连接BE,DE.

题目的图片画错了吧.参考:再问:图没错,字母有点错再答:解法完全一样,不用改。就是这么做。我的图和你的图一样,只不过你的图顺时针转90度就是我的图。解法不用改,是对的。

如图,P是边长为1的正方形ABCD对角线AC上一点(P与A、C不重合),点E在射线BC上,且PE=PB.

证明:(1)①过点P作GF∥AB,分别交AD、BC于G、F.如图所示.∵四边形ABCD是正方形,∴四边形ABFG和四边形GFCD都是矩形,△AGP和△PFC都是等腰直角三角形.∴GD=FC=FP,GP

已知 如图 在正方形ABCD中,点E在对角线AC上,求证BE=DE

因为是正方形所以∠DCA=∠BCA=45°,BC=DC在三角形DCE和三角形BCE中,CE是公共边所以ΔDCE≌ΔBCE(SAS)所以BE=DE

在正方形ABCD的对角线AC上取点E,使CE=CD,过E作EF垂直AC交AD于F.求证:AE=EF=DF?在

三角形AEF是等腰直角三角形,所以AE=EF;连接CF,三角形CEF和三角形CDF全等,所以EF=ED

如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.(1)求证:

(1)在△CPD和△BCP中,PC=PC,BC=CD,∠BCP=∠PCD,所以△CPD全等于△BCP(SAS),所以PD=BP,又因为PE=PB,所以PE=PD.所以∠PDC=∠PBC,又因为PE=P

已经知边长为1的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),点E在射线BC上,且PE=PB.1.求

设p到bc的垂足为F,则pc=√2-xcf=pf=(√2-x)/√2bf=1-cf=1-(√2-x)/√2因为pb=pe,则bf=ef,故be=2bf=2*[1-(√2-x)/√2]则三角形面积y=1

点E,F在正方形ABCD的对角线AC上,且AE=CF,求证:四边形EBFD是菱形

∵AB=CB=CD=AD,∠BAE=∠DAE=∠BCF=∠DCF=45°AE=AE=CF=CF∴△ABE≌△ADE≌△CBF≌△CDF∴BE=DE=BF=DF∴四边形EBFD是菱形

过正方形ABCD的顶点B作直线BE平行于对角线AC,AE=AC(E,C均在AB的同侧)求证:角CAE=2倍角BAE

连接BD,过E作EF⊥AC,BG=EF=1/2BD=1/2AC=1/2AE ∠EAC=30° ∠BAC=45° ∠BAE=15°,∠EAC=2∠BAE再问:再做一遍吧..

如图,P是正方形ABCD的对角线AC上一点,E在BC上,且PB=PE

提示:先证明△BPC≌△DPC得到PB=PD=PE作PM⊥BC于M,PN⊥CD于点N再证△PEM≌△PND可得(1)PD=PE(2)PD⊥PE