正方形对角线上的点到正方形的三个顶点的距离最短

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:43:32
把-1,-2,3,-4,-5,6,-7,-8,9分别填入正方形框中使每行、每列、每条对角线上的3个数的积都是正数

只要让369这三个数在对角线上就可以了.答案不唯一.例如:3-1-2-46-5-7-89

正方形ABCD,边长为4,E是AB边上的一点,AE为3,P是对角线上的移动点,问PE+PB的最小值是多少

因为P在正方形对角线上,所以可以证明三角形DAP和三角形BAP全等所以PB=PD于是PB+PE就转化成PD+PE的最小值两点之间直线最短咯于是就是D、P、B三点在同一直线上时取到最小值就相当于是求直角

把-1.+2.-3,+4,-5,+6,-7,+8,-9填入九个正方形中,使每行每列每一条对角线上的三个数都满足

+4-3+8-9-5-1+2-7+6解法如下:首先根据绝对值和相等,可得,每条线的和都应是15,将中间数-5放在最中间.其余组对,绝对值和为10一组,分别放在-5的两侧.其次,根据积为负,把两组全为正

怎样在一个正方形的对角线上找一点,使他到正方形三个顶点距离最短?方法是什么?(最后什么数学思想)

先分析问题:一条对角线连接了两个顶点,而另两个顶点关于此对角线对称,因此可选取对角线外两点中任一点做题.对角线的长度是一定的,也就是说无论你选取的点在对角线上的什么地方,此点到对角线的两个端点的距离是

如图,O为正方形ABCD对角线上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.

证明:(1)连OM,过O作ON⊥CD于N;∵⊙O与BC相切,∴OM⊥BC,∵四边形ABCD是正方形,∴AC平分∠BCD,∴OM=ON,∴CD与⊙O相切.(2)∵四边形ABCD为正方形,∴AB=CD=1

正方形对角长度计算4657x4657的正方形,对角长度应该是多少呢?用计算器如何计算呢?4657x4657正方形对角长度

首先对角线长度利用勾股定理来计算,应该是2开根号乘以4657.另外对角限长度的1/2是这个正方形的中心.

已知,在边长为6的正方形ABCD的两侧如图作正方形BEFG、正方形DMNK,恰好使得N、A、F三点在一直线上,连接MF交

(1)∵四边形BEFG、DMNK、ABCD是正方形,∴∠E=∠K=90°,AE∥MC,MC∥NK,∴AE∥NK,∴∠KNA=∠EAF,∴△KNA∽△EAF,∴NKEA=KAEF,即yx+6=y−6x,

如图,o为正方形ABCD对角线上一点,以o为圆心,OA的长为半径的○O与BC 相切于M,

o是哪个对角线上的点!应该是对角线AC上的一点吧!由于是正方形对角线AC上的点则O到BC和DC的距离是一样的.这个圆和BC相切,当然也和CD相切了

已知如图,O是正方形ABCD对角线上一点,以点O为圆心,OA长为半径的圆O与BC相切与点M,与

∵BC、CD是切线,∴∠ONC=∠ONC=90°,∵ABCD是正方形,∴∠BCD=90°,∴四边形OMCN是矩形,又OM=ON,∴矩形OMCN是正方形,设圆半径为R,OA=OM=CM=R,∴OC=√2

已知:如图,正方形ABCD的边长为8cm,M在CD上,且DM=2cm,N是对角线上的一动点,则DN+MN的最小值为()c

10cm你把D沿AC对称到B,DN+MN的最小值就是BM 那图好像不能显示,你点一下就能看了

O是正方形ABCD对角线上一点,以点O为原型,OA长为半径的圆O与BC相切于点M.若正方形ABCD的边长为1,求圆O的半

过O作ON⊥CD于N,连接OM,∴OM⊥BC,∴AB∥OM∥DC,∵AC为正方形ABCD对角线,∴∠NOC=∠NCO=∠MOC=∠MCO=45°,∵OM=ON,∴四边形ONCM为正方形,∴ON⊥OM,

已知正方形ABCD,P为对角线上任意一点,PE垂直于BP,EF垂直于PF,求PF与AC的关系

连BD交AC于M,连PD易得BD⊥AC于M,△BPC≌△DPC有∠BPC=∠DPC又有∠BPC+∠CPE=∠CPE+∠PEF有∠BPC=∠DPC=∠PEF在△EFC中,∠FEC=∠FCE=45°∠DE

(2014•长春模拟)如图,边长为6的大正方形中有两个小正方形,小正方形的各顶点均在大正方形的边或对角线上.若两个小正方

如图,由正方形的性质,∠1=∠2=∠3=∠4=45°,所以,四个角所在的三角形都是等腰直角三角形,∵正方形的边长为6,∴AC=62,∴两个小正方形的边长分别为13×62=22,12×6=3,∴S1与S