正无穷加负无穷等于零
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:08:57
原式=(1/π)*(arctgx)|正无穷大,负无穷大=(1/π)[π/2-(-π/2)]=1
∫x^4*e^(-x^2)dx=2∫x^4*e^(-x^2)dx(从0到+∞积分)=2∫t^2e^(-t)*1/[2√t]dt(设t=x^2)=∫t^(5/2-1)e^(-t)dt=Γ(5/2)=3/
x^2*e^(-x^2)dx=-(x/2)d(e^(-x^2))由上式用"分部积分公式",得到前面一部分是-(x/2)*(e^(-x^2))l上面正无穷,下面负无穷,这一项的值为零,后面一部分还是一个
不存在.说明你的计算方法有问题.可能需要分段几分,或其他技巧再问:上下线都是无穷的广义积分就是可能不存在的,方法没错。就是想知道负无穷加正无穷等于0吗?是不是只要有一个积分发散,整体这个广义积分就发散
设arctanx=α,(1)则α∈(-π/2,π/2)且tanα=x由cos²α=1/(1+tan²α)及cosα>0,得cosα=1/√(1+x²)所以sinα=tan
显然,a≠-1∵lim(x->∞)[√(x²-x+1)-ax-b]=0==>lim(x->∞){[x²-x+1-(ax+b)²]/[√(x²-x+1)+ax+b
这样,比如x/y是一个“无穷/无穷”的形式,你可以这样变一下:x/y=(1/y)/(1/x)这样不就是“0/0”形式么~
给你一个不是很严密的做法,严格做法在同济大学高等数学教材中有(下册二重积分极坐标部分)设u=∫[-∞,+∞]e^(-t^2)dt两边平方:下面省略积分限u^2=∫e^(-t^2)dt*∫e^(-t^2
反常积分,I=arctanx|(-∞,+∞)=π/2-(-π/2)=π
正无穷的负无穷次方等于正无穷的正无穷次方分之一,也就是正无穷分之一,然后就是0了,为什么这样是不对的出处?再问:这是我的理解,想问哪里出问题了再答:正无穷的负无穷次方等于正无穷的正无穷次方分之一,也就
arctanx,当x趋近于正无穷,负无穷时,函数是的极限分别是π/2,-π/2;当x趋近于无穷时,函数没有极限.arccotx,当x趋近于正无穷,负无穷时,函数是的极限分别是0,π;当x趋近于无穷时,
如果上面要问的函数是y=(x-1)^3的话,楼主可作如下思考首先,可把y=(x-1)^3看作是将幂函数y=x^3在坐标系的图像整体向右移动一个单位.根据y=x^3在其定义域中的单调递增来看,y=(x-
∫dx/1+x^2=arctanxlim(x→+∞)arctanx=π/2lim(x→-∞)arctanx=-π/2所以原式=π/2-(-π/2)=π
你看题目,是不是 x<0时,f(x)=0 所以在负无穷到0积分值为0 就直接从0到正无穷积分
首先你得负无穷次方什么意思,是一个数无穷次方的倒数,分几种情况:a>1或aa>0,0>a>-1a的负无穷次方为无穷大a=-1a的负无穷次方俩值1和-1