求y=sin(-3x 兀 4)的递增区间及对称轴
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:27:47
函数f(x)=sin(3x+y)是偶函数,则f(-x)=sin(-3x+y)=f(x)=sin(3x+y)由正弦函数的性质sin(π-x)=sinx及周期性可得(-3x+y)+(3x+y)=π+2kπ
tanx+tany=3(tanx)(tany)=-3tan(x+y)=(tanx+tany)/(1-tanxtany)=3/4[sin(x+y)]^2+[cos(x+y)]^2=1[sin(x+y)]
y=sin³x-sin3x→y'=3sinx·(sinx)'-cos3x·(3x)'→y'=3sin²xcosx-3cosx→y'=3(1-cos²x)cosx-3cos
2kπ-(π/2)
复合函数应该用链式法则求导:若y=g(u),u=f(x),则dy/dx=dy/du*du/dxy=sin^5xdy/dx=dsin^5x/dsinx*dsinx/dx=5sin⁴xcosx
我说说方法,你自己算右边化为SIN平方X=1/2-1/2COS2X先解方程Y”+Y=1/2得Y=1/2再解方程Y”+Y=1/2COS2X方法是令Y=C1(X)*SIN2X+C2(X)*COS2X代入方
y'sin(y/x)-y/x*sin(y/x)+1=0令y/x=u,则y'=u+xu'所以(u+xu')sinu-usinu+1=0xu'sinu+1=0-sinudu=dx/x两边积分:cosu=l
y'=(cos²x)'-(sin3^x)'=2cosx·(cosx)'-cos3^x·(3^x)'=2cosx·(-sinx)-cos3^x·(3^x·ln3)=-sin2x-ln3·cos
y=sin⁴3xcos³4xdy/dx=cos³4x*d(sin⁴3x)/dx+sin⁴3x*d(cos³4x)/dx=cos
sin^2x+cos^2y=1/2∴sin^2x=1/2-cos^2y3sin^2x+sin^2y=3(1/2-cos^2y)+sin^2y=1.5-3cos^2y)+sin^2y又有sin^2y+c
cos(x+y)cosy+sin(x+y)siny=cos((x+y)-y)=cosx=4/5sinx=正负3/5tanx=正负3/4
y=sin(x+π/3)sin(x+π/2)=sin(x+π/3)cosx=(sinxcosπ/3+cosxsinπ/3)cosx=1/2sinxcosx+√3/2cos^2(x)[cos^2(x)指
y=(lnx)^3+(sinx)^2y'=dy/dx=3(lnx)^2/x+2sinxcosx=3(lnx)^2/x+sin2xdy=[3(lnx)^2/x+sin2x]dx
分析:要利用正弦本身的单调性;但是,x系数符号正直接用正弦单调性;x系数为负则相反单调性;①y=2sin(-x)=-2sinx所以单调增区间为:π/2+2kπ≤x≤3π/2+2kπ,k∈Z②y=3si
2x+兀/4=[兀/2+2k兀,3兀/2+2k兀]2x=[兀/4+2k兀,5兀/4+2k兀]x=[兀/8+k兀,5兀/8+k兀]
周期就是y(x+T)=y(x),1、y(x+T)=3sin[2(x+T)+pi/4]=y(x)=3sin(2x+pi/4),2T=2pi,T=piy=1/2sin(1/2x+pi/3),2、1/2si
y'=2e^2xcos(e^2x)把y看成复合函数sint,t=e^m,m=2x.复合函数求导,等于三个分别求导的积
y=sin(-3x)=-sin3x单调递增区间是2kPai+Pai/2
y=sinx增区间[2kπ-π/2,2kπ+π/2]所以本题,2kπ-π/2≤π/4+2x≤2kπ+π/2kπ-3π/8