求∫tan²xsec∧4xdx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 15:37:31
求不定积分∫arctan xdx

∫arctanxdx=x*arctanx+∫x/(1+x²)dx=x*arctanx-1/2*ln(1+x²)+C

∫tan^2xdx=∫(sec^2x-1)dx

∫tan^2xdx=∫(sec^2x-1)dx=∫sec^2xdx-∫1dx=tanx-t+C

请解释高数例题:1、∫tan ^2 x sec xdx 2、∫1/x^2+4 dx 3、∫tanx dsec^(n-2)

==建议你还是先把前面的基本积分公式背熟在来做题吧.1∫tanxsecx=secx所以原式里面的tan^2xsecx可以拆成(tanxsecx)*tanx把(tanxsecx)代到后面变成secx.利

求不定积分∫xtanx(sec^2)xdx!

原式=∫xsinx/cos^3(x)*dx=-∫x/cos^3(x)*d(cosx)=1/2∫xd(1/cos^2(x))=x/(2cos^2(x))-1/2∫dx/cos^2(x)=x/(2cos^

求∫tan^3xdx sin^3x/cos^3x dx设cosx=u 是不是不能写成 cosx=u du=-sinxdx

就按楼主的步骤做sin^3x提出一个sinx、sin^3x/cos^3xdx=1/3sin^2x/cos^3xdcosx=(1-cos^2x)/cos^3xdcosx=(1/cos^3x-1/cosx

∫√1+tan²xdx等于多少

首先1+tan²x=1/cos²x,所以∫√1+tan²xdx=∫1/cosxdx而∫1/cosxdx=∫cosx/cos²xdx=∫1/(1-sin²

求不定积分 ∫xe^2xdx

1/2∫e^2xdx=1/4∫e^2xd2x是因为dx变为d2x了dx=(1/2)d2x1/2∫e^2xdx=1/2∫e^2x(1/2)d2x=1/4∫e^2xd2x

求不定积分∫xcos xdx

∫cos²xdx=∫cosxdsinx=sinxcosx-∫sinxdcosx=sinxcosx+∫sin²xdx=sinxcosx+∫(1-cos²x)dx=sinxc

求不定积分∫x^2 ln xdx

用分部积分法,先把x^2放到dx里面然后分部积分再把dlnx变成1/xdx

∫arcsin^2.xdx求不定积分

换元法:令arcsinx=u,则x=sinu,dx=cosudu原式=∫u²cosudu=∫u²dsinu分部积分=u²sinu-2∫usinudu=u²sin

求定积分∫上限π/2,下限0 4sin^2xcos^2xdx,

这题方法有很多,你可以把cos^2x换成1-sin^2x4sin^2xcos^2x=4(sin^2x-sin^4x)sin^2x和sin^4x积分是有公式的.但是一般人估计也记不得,所以方法二:为了方

求不定积分?∫cosx/xdx

∫cosx/xdx是超越积分,已经被证明了它的不定积分不可积.因此是没有答案的.只能求定积分,而且求定积分只能求特殊点,也不能用牛顿-莱布尼茨公式.你在哪里看到的题目呀?

求∫x^2根号xdx不定积分

∫x^2√xdx=∫x^(5/2)dx=2/7*x^(7/2)+C再问:∫x^(5/2)dx里的5/2怎么得出来的?再答:√x=x^(1/2)

求不定积分∫sinx/xdx

它的原函数无法用初等函数表达.再答:有不懂之处请追问,望采纳。

求不定积分∫e^根号下xdx,

∫e^√xdx=2∫√xe^√xd√x=2∫√xde^(√x)=2√xe^(√x)-2∫e^√xd√x=2√xe^(√x)-2e^(√x)+C

求不定积分 ∫ x arctan xdx

∫xarctanxdx=∫arctanxd(x^2/2)=x^2/2*arctanx+(1/2)∫x^2/(1+x^2)*dx=(1/2)(x^2arctanx+x-arctanx)+C

急求∫tan^(-1)(1/x)dx 及 ∫sin^6xcos^2xdx详细解答,且要用到分部积分法的~

∫arctan(1/x)dx=∫(x)'arctan(1/x)dx=xarctan(1/x)-∫x*{1/[1+x^(-2)]}*[-1/x^2]dx=xarctan(1/x)+∫1/(x+1/x)d

求不定积分∫(0~+∞)xe^xdx

你那个是反常积分,不定积分如下:∫xe^xdx=∫xd(e^x)=x(e^x)-∫(e^x)dx=x(e^x)-e^x+C

求下列不定积分∫√lnx/xdx

答:∫√lnx/xdx=∫√lnxd(lnx)=(2/3)*(lnx)^(3/2)+C

求定积分∫[0,π/4]xsec²x/(1+tan²x)²dx ,答案是π²/6

没错,1+tan²x=sec²x原式=∫(0~π/4)xsec²x/sec⁴xdx=∫(0~π/4)xcos²xdx=(1/2)∫(0~π/4)xd