求函数Z=x^4 y^4-3xy 2y的偏导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:03:08
1、(1)+(2)×4得11x-33z=0∴x=3z把x=3z代入(2)得6z+y-8z=0∴y=2z把x=3z,y=2z代入x²+y²-z²÷xy+yz得原式=(9z&
上式等于(x-3y)^2+(y+2)^2++∣Z²-3Z+2∣=0由于上面三个都是非负数,所以这三个得解都是0解得x=3y=-6y=-2z=2或1得(X+Y)的Z次方的值=-8或64
x²-6xy+10y²+4y+|z²-3z+2|+4=0(x²-6xy+9y²)+(y²+4y+4)+|z²-3z+2|=0(x-
题目出错了吧应该是x^2-4x+y^2+6y+√(z-3)+13=0即(x-2)^2+(y+3)^2+√(z-3)=0(xy)^z=(2*(-3))^3=-216啊你也去想想吧
首先z'(x)=x*(a-x-2*y)=0z'(y)=y(a-y-2*x)=0计算得到四组解(0,0)(a,0)(0,a)(a/3,a/3)1.(0,0)时,f''xx=0,f''xy=a,f''yy
就是求偏导Z’|x=2x+y-3Z’|y=x+2y-6令Z’|x=0,Z’|y=0,组合方程式得x=0,y=3即(0,3)就是Z的驻点,所以极值为f(x,y)=-9
z=xy+x/y对x的偏导数=y+1/y对y的偏导数=x-x/y^2
由3x-4y-z=0得z=3x-4y③由2x+y-8z=0得y=8z-2x④④代入③得x=3z⑤y=2z将x,y代入(x^2+y^2+z^2)/(xy+yz+2zx)=(9z^2+4z^2+z^2)/
题目应为:xy/(x+y)=6/5yz/(y+z)=12/7xz/(x+z)=4/3求x和y和z运用倒数变形可解因为1/y+1/x=5/6,1/z+1/y=7/12,1/z+1/x=3/4三式相加得1
4x-3y=3z.(1)x-3y=z.(2)(1)-(2)得3x=2zx=(2/3)z代入(2)得(2/3)z-3y=zy=-(1/9)z则xy+2yz/x²+y²+z²
由4x-5y+2z=0,(1)x+4y-3z=0,(2)将2式乘以4减去1式,可以得出,21y=14z,即z=1.5y代回1式可得,4x-5y+3y=0,即4x=2y,x=0.5y分别代入(x
y=4/3XZ=2X带进去算就可以了
1.z'x=3x²y²z'y=2x³y2.z'x=4x³z'y=3y³3.z'x=ye^(xy)+2xyz'y=xe^(xy)+x²4.u'
设k=x/3=y/4=z/6∴x=3k,y=4k,z=6k(xy+yz+xz)/(x²+y²+z²)=(12k²+24k²+18k²)/(9
3x-4y=z,2x+y=8z,解得:x=3z,y=2zxy+yz分之x二次方+y二次方-z二次方=(x^2+y^2-z^2)/(xy+yz)=(9z^2+4z^2-z^2)/(6z^2+2z^2)=
令X=3k,由于x:y:z=3:4:6则:y=4k,z=6k将x=3k,y=4k,z=6k代入(xy+yz+xz)/(x^+y^+z^)则有:(xy+yz+xz)/(x^+y^+z^)=(12k^+2
xy+xz+yz=76,x/3=y=z/4所以,19x^2/9=76,x^2=362x*x+12y*y+9z*z=58x^2/3=58*12=696
解方程组:{2x-3y-z=0.(1){x+3y-14z=0.(2)(1)+(2)得:3x-15z=0即:x=5z,代入(1)式得y=3z所以:(4x²-5xy+z²)/(xy+y
解题思路:本题的关键是将三个方程两边取倒数,化简后分别将方程等号左边和右边相加,得到1/x+1/y+1/z的值,最后将要求的分式化简,把1/x+1/y+1/z的值带入即可。解题过程:
3x-y=-2zx+2y=-3z那么:x=-z,y=-z(3x^-xy+2y^)/(2x^+4xy+y^)=(3z^2-z^2+2z^2)/(2z^2+4z^2+z^2)=4z^2/7z^2=4/7