f(1 lnx) xdx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:35:01
怎么化得?f(x)-f(1/x)lnx=1化成f(x)=1+lnx/1+lnx2

令x=1/x,得令我一个等式:f(1/x)-f(x)ln(1/x)=1,两式相加化简就可以得到了

d f = xdx +ydy

df/dx=x这个结论不全对,应该是f对x的偏导等于x,而不是导数.这是因为全微分公式,f的全微分=f对x的偏导乘以dx+f对y的偏导乘以dy.

f((1-lnx)/(1+lnx))=xlnx求f(x)

令t=(1-lnx)/(1+lnx)得lnx=(1-t)/(t+1)x=e^[(1-t)/(t+1)]所以f(t)=(1-t)/(t+1)*e^[(1-t)/(t+1)]即f(x)=(1-x)/(1+

设函数F(X)=X+X/1-a*lnx

你说的a*lnx指的是a的lnx次方是吗?再问:不是

∫xcos 3xdx,∫xln(x+1)dx,∫x^2 e^-2x ,∫lnx\根号x dx求不定积分

∫xcos(3x)dx=xsin(3x)/3-1/3∫sin(3x)dx(应用分部积分法)=xsin(3x)/3+cos(3x)/9+C(C是积分常数)∫xln(x+1)dx=x²ln(x+

∫f(x)/xdx f(x)=∫(上限x 下限1)ln(t+1)/t dt

{f(x)d(lnx)={f(e^lnx)d(lnx)=f(e^x)+c,{ln(t+1)dt={ln(t+1)d(t+1)=={e^lnt*ln(t+1)dln(t+1)={e^ln(t+1)ln(

设函数f(x)具有连续导数,且曲线积分 ∫(sinx-f(x))y/xdx+f(x)dy与路径无关,f(派)=1,则f(

这是小学题吗?⊙_⊙再答:出题请出在相对的年纪哦再答:给个采纳吧再问:我填的其它再问:我填的其它,怎么成小学了再问:你太可爱了再答:额再答:因为你问的问题那有选择哦再答:有采纳吗再问:没有再答:哦再问

设函数f(x)在(0,﹢∞)内连续,证明∫f(2/x+x/2)·lnx/xdx=ln2·∫f(2/x+x/2)·1/xd

是不定积分?还是(0,﹢∞)上的积分?我想应该是后者做变量代换:令4/x=t,则x=4/t,dx=-4/t^2dt,且t的变化是从+∞到0,此时2/x=t/2,x/2=2/t左边=-∫f(t/2+2/

已知函数f(x)=lnx+ax+(a+1)/x

解题思路:)当a>-1/2时,讨论函数单调性2)当a=1时,若关于x的不等式f(x)≥m^2-5m-3恒成立,求m的取值范解题过程:

求:∫lnx/根号xdx的不定积分,答案说等于:4根号x((ln根号x)-1)+c,是怎么得的.

∫lnx/√xdx=∫lnx*2/(2√x)dx=2∫lnxd(√x)=2√xlnx-2∫√xd(lnx)、分部积分法=2√xlnx-2∫√x*1/xdx=2√xlnx-2∫1/√xdx=2√xlnx

∫(1/x+lnx)e^xdx…用分部积分法求…求详细过程

∫(1/x+lnx)e^xdx=∫1/x*e^xdx+∫e^xlnxdx=∫e^xdlnx+∫e^xlnxdx=e^x*lnx-∫lnxde^x+∫e^xlnxdx=e^xl*nx-∫e^xlnxdx

已知函数f(x)=(a+1)lnx+ax2+1

原函数f(x)=(a+1)lnx+ax^2+1,已知:ax2,且x>0.原函数的导函数f'(x)=(a+1)/x+2ax.因为a0得:f'(x)0对于不等式|f(x1)-f(x2)|>=4|x1-x2

求∫(0到1)(1/e)xdx +∫(0到1)[(1/e)x-lnx]dx

=∫(0到1)(1/e)d(1/2)x^2=(1/2e)x^2(0到1)=(1/2e)积分公式uv|(a到b)-∫(a到b)vdu;还是算不出不需要这个公式你都已经算出来了还这么大费周折干嘛为什么不需

已知函数f(x)=lnx+1x−1

(1)由x+1x−1>0,解得x<-1或x>1,∴定义域为(-∞,-1)∪(1,+∞)(2分)当x∈(-∞,-1)∪(1,+∞)时,f(−x)=ln−x+1−x−1=lnx−1x+1=ln(x+1x−

求导数f(x)=(x+1)lnx-x+1

f'(x)=lnx+(x+1)/x-1=lnx+1/x

求(1+lnx)/xdx 在积分下限1到积分上限e的定积分

(1+lnx)/xdx=(1+lnx)dlnx=lnx+(lnx)^2/2定积分等于3/2.

求导f(x)=1/【x*(lnx)】

f(x)=(xlnx)^(-1)所以f'(x)=-1*(xlnx)^(-2)*(xlnx)'(xlnx)'=x'lnx+x*(lnx)'=lnx+x*1/x=lnx+1(xlnx)^(-2)=1/(x

求下列不定积分∫√lnx/xdx

答:∫√lnx/xdx=∫√lnxd(lnx)=(2/3)*(lnx)^(3/2)+C

f'(lnx)=xlnx/(1+lnx)^2,则f(x)=?

赋值,用e^x赋值代入得f(x)=x*e^x/(1+x)^2再问:能写具体点么?谢谢!再答:用e^x代入到x中得f(lne^x)=e^x*lne^x/(1+lne^x)^2f(x)=e^x*x/(1+