f(1)=2 xf(x)在1 2到0处的定积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:35:01
解题思路:把给出的函数求导得其导函数,在导函数解析式中取x=1可求2f′(1)的值.解题过程:最终答案:B.
第一个是变限积分,得到f(x)=2sin(x^2)/x,然后带到第二个里面就简单了,变成2∫(1到0)sin(x^2)dx刚才弄错了,这个貌似不好算
你要明白一点就行了,那就是积分符号1到0,xf(x)dx是个常数.我们可以把它设为C.然后得出f(x)=x+C.然后得出xf(x)的表达式.你把这个表达式积分得出c的等式.解出C.然后不就出来了.
第一题:令x=π-t,∫0到πxf(sinx)dx=-∫π到0(π-t)f(sint)dt=∫0到πf(sint)dt-∫0到πxf(sinx)dx看出来没,2∫0到πxf(sinx)dx=∫0到πf
希望对你有用哦要用到不少极限方法
∫[0→1]xf''(2x)dx=(1/2)∫[0→1]xdf'(2x)=(1/2)xf'(2x)|[0→1]-(1/2)∫[0→1]f'(2x)dx=(1/2)f'(2)-(1/4)f(2x)|[0
1)f'(x)=2x+3f'(2)把x=2代入f'(2)=2*2+3f'(2)f'(2)=-22)同样的做法f‘(x)=f’(π/4)(-sinx)+cosx把x=π/4代入上式算出f'(π/4)=1
两边对x求导f'(x)=∫f(t)/t²dt+f(x)/x,移项f'(x)-f(x)/x=∫f(t)/t²dt,在求导f''(x)-[f'(x)x-f(x)]/x²=f(
令t=π-x,做代换可以证明.详见参考资料
根据洛笔答法则,lim((sinx+xf(x))/x3)=lim((cosx+f(x)+x·f'(x))/3x²)若x→0时这个极限存在,则必有limcosx+f(x)+x·f'(x)=0则
刚回荅:∫xf(x)f'(x)dx=(1/2)∫xdf(x)^2=(1/2)xf(x)^2-(1/2)∫f(x)^2dx,代入上下限后=-1/2.选D
原式=∫(0,1)xdf'(x)=xf'(x)-∫(0,1)f'(x)dx=[xf'(x)-f(x)](0,1)=[1*f'(1)-f(1)]-[0*f'(0)-f(0)]=f'(1)+f(0)-f(
已知定义在R上的偶函数f(x),当x>0时,f(x)=-x^3+1,则f(-2)Xf(3)的值为解析:∵定义在R上的偶函数f(x),当x>0时,f(x)=-x^3+1∴当xf(x)=f(-x)=x^3
∫(0,1)xf''(x)dx=∫(0,1)xdf'(x)=xf'(x)|(0,1)-∫(0,1)f'(x)dx=f'(1)-0-f(x)|(0,1)=0-[f(1)-f(0)]=-2
对原式求导可得:f'(x)=2x+2f'(1)令x=1有f'(1)=2+2f'(1)于是f'(1)=-2故f(x)=x^2-4xf'(x)=2x-4f'(-1)=-6
因为f(x)在(0,+无穷)上是增函数,所以,f(x)在(-无穷,0)上也是增函数,又f(x)是奇函数,f(-1)=0,所以,f(1)=0,且x
因为f(x)在(0,+无穷)上是增函数,所以,f(x)在(-无穷,0)上也是增函数,又f(x)是奇函数,f(1)=0,所以,f(-1)=0,且x
∫xf(x)f'(x)dx=(1/2)∫xdf(x)^2=(1/2)xf(x)^2-(1/2)∫f(x)^2dx,代入上下限后=-1/2.