求幂级数nx的n 1次方的收敛域与函数?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:32:14
求幂级数∑(n=1,∞)nx^n的收敛域与和函数.

把求和项里的x提出来一个s(x)/x=∑(n=1,∞)nx^(n-1)两边同时积分,∫∑(n=1,∞)nx^(n-1)积分得∑(n=1,∞)x^n级数=1/(1-x)-1,(|x|

求幂级数的 收敛半径 收敛域与和函数~

=∑(n=1,∞)[3x^n+(-2x)^n]/n求导得:∑(n=1,∞)[3(3x)^(n-1)+(-2)(-2x)^(n-1)]=3/(1-3x)-2/(1+2x)收敛半径R=1/3.x=1/3发

利用幂级数的和函数的性质求幂级数在其收敛域上的和函数∑(+∞,n=1)nx^(n-1),

易知收敛域为(-1,1),因为nx^(n-1)=(x^n)的导数,所以∑nx^(n-1)=(∑x^n)的导数,求得和函数为1/(1-x)^2.再问:神人也!哈,请在详细点可否,小弟我可没那么聪明哦再答

求幂级数∑(∞,n=1)1/nx∧n的收敛域和函数

用柯西判别法可以判断收敛半径为1,另外在1处显然发散,在-1处为莱布尼茨型级数显然收敛,所以收敛域为[-1,1),令S=∑(∞,n=1)1/nx∧n,则S′=∑(∞,n=1)x∧(n-1)=1/(1-

求幂级数 的收敛半径和收敛域

收敛半径:r=lim|a(n+1)/an|=limn^2/(n+1)^2=1收敛域:|x-3|

求幂级数的收敛域

先用阿贝尔定理求出收敛半径,r=1再看两端特殊点:当x=1时,级数变成交错级数,1-1/2+1/3-1/4+...通项递减且趋于0,所以收敛.当x=-1时,级数变成调和级数,当然发散.所以收敛域是(-

求解高数题--求幂级数的收敛域

再问:我们答案给的是(-max(a,b),max(a,b))再答:有区别么.............R=max(a,b)??

第八题,求幂级数的收敛域

由比值法得解得:故收敛域为

求幂级数的收敛域(题如图)

把3放到上面去不就变成类似对数函数的展开式了么,中心1,半径三,在两个端点恒正的级数发散,交错级数收敛,所以A

求幂级数 的收敛域.

设级数的系数为a[n],收敛半径计算公式:R=1/(lim[n->∞]sum(a[n])^(1/n)).本题是交错级数,考虑其绝对值.a[n]=1/n^2R=lim[n->∞](n^2)^(1/n)=

求幂级数的收敛半径和收敛域

再问:求收敛域的时候我能证出来x=3时发散但x=-3的时候敛散性要怎么证明再答:对,严格来说,收敛区域是-3≤x

求幂级数∑(∞,n=1)nx^n的收敛域及和函数

令原式=f(x)=∑nx^n积分得:F(x)=∑x^(n+1)=x^2/(1-x),当|x|

求幂级数∑(∞,n=1)nx^(n-1)的收敛域及和函数

另an=nx^(n-1)由a(n+1)/an=(n/(n-1))*x

求下列两个幂级数的收敛半径和收敛域,

现在才看到,不知道还需不需要帮你解答.我又不会打那些数学符号,只好大致写一下了.第一题:应该用比值审敛法:lim|(un+1)/(un)|=1/2lim(2n+1)/(2n-1)*|x|2=1/2*|

1.求幂级数∑(∞,n=1) nx^(n+1)的收敛半径、收敛区间.

∑nx^(n+1),a(n)=n,a(n+1)/a(n)->1=>收敛半径R=1,收敛区间(-1,1)看区间端点:x=±1,∑n与∑n(-1)^(n+1)通项极限不存在,故发散=》收敛域(-1,1)再

求该幂级数的收敛域, 

通过    lim(n→∞)|u(n+1)/u(n)|=…=1/2,收敛半径r=2,故收敛区间为(-3,1);又在x=-3级数发散,而在x=1级数收敛,故收敛域为(-3,1]