求微分 y=cos根号x-2的x次方,求dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 14:45:01
求函数z=e^xy*cos(x+y)的全微分dz

我来试试吧...z=e^xy*cos(x+y)Z'x=ye^xycos(x+y)-e^xysin(x+y)Z'y=xe^xycos(x+y)-e^xysin(x+y)故dZ=[ye^xycos(x+y

求由方程cos(xy)=x^2*y^2所确定的函数y的微分

隐函数求导设z=x²y²-cos(xy)dy/dx=-(δz/δx)/(δz/δy)=-(2xy²+ysin(xy))/(2x²y+xsin(xy))=-y/x

求由方程cos(xy)=x^2*y^2 所确定的y的微分

-sin(xy)[ydx+xdy]=2xy^2*dx+x^2*2ydy-sin(xy)ydx-sin(xy)xdy=2xy^2*dx+2x^2*ydy-2x^2*ydy-sin(xy)xdy=2xy^

设函数y=e^2x+cos x求倒数y'与微分dy

再答:再问:dy再答:����ѽ��再问:΢��dy再问:û�ĵ�再答:

求微分 y=ln(1-x^2) y=e^-x +cos(3+x) y=sin2x

-((2x)/(1-x^2))dx;(-E^-x-Sin[3+x])dx;2Cos[2x]dx

(高数)求y=e^(-x)cos(3-x)的微分

微分的乘积法则和链式法则学过吗?这两个都是微分基本的法则,做这道题时都会用到.y=e^(-x)cos(3-x)dy/dx={d[e^(-x)]/dx}cos(3-x)+e^(-x){d[cos(3-x

求x=y^y的微分

如果对x求导,则ln|x|=yln|y|,1/x=y'/y+yy'/y=y'/y+y',.对数求导法.如果对y求导,则ln|x|=yln|y|,x'/x=ln|y|+y/y,x'=y^y(1+ln|y

y= e的-x次方cos(3-x) 求他的微分

微分dy=[-e的(-x)cos(3-x)+e的(-x)sin(3-x)]dx要想求导的话就直接把dx移到前边去就好了.

求函数y=ln(x+根号(1+x^2))微分,以及函数y=ln(2x+根号(1+x^2))微分,

symsx>>y=log(x+sqrt(1+x^2));>>simple(diff(y)ans=1/(1+x^2)^(1/2)>>y=log(2*x+sqrt(1+x^2));>>simple(dif

求函数y=ln(x+根号(1+x^2))微分

y=ln[x+√(1+x²)]∴y'=[x+√(1+x²)]'/[x+√(1+x²)]=[1+x/√(1+x²)]/[x+√(1+x²)]=[x+√(

求函数y=ln(cos根号3-2x)的微分

再答:我的回答你还满意吗?如有疑问请继续追问我

求下列函数的微分:(1)y=(2x^3-3x^2+3)(根号x+1/x) (2)y=cos^3x^2

(1)y=(2x^3-3x^2+3)(√x+1/x)=2x^(7/2)-3x^(3/2)+3x^(1/2)+2x^2-3x+3/x, dy=[7x^(5/2)-(9/2)x^(1/2)+(3/2)x^

1.求y=(cos x)^2的微分.2.求y=sin(x^2-1)的微分.

1.d(cosx)^2=2cosx(-sinx)dx=-sin2xdx2.dsin(x²-1)=cos(x²-1)d(x²-1)=cos(x²-1)×2xdx=

y=arcsin根号下(1-x^2),求微分

y=arcsin√(1-x^2)y'=-x/(|x|√(1-x^2))∴dy=-xdx/(|x|√(1-x^2))当x>0dy=-dx/√(1-x^2)当x

求y=[ln(1-x)^2]^2的微分

y=[ln(1-x)^2]^2y'=2[ln(1-x)^2]*[ln(1-x)^2]'=2[ln(1-x)^2]*[2ln(1-x)]'=2[ln(1-x)^2]*2*1/(1-x)=4*[ln(1-

求函数的全微分,z=ln根号(x^2+y^2+4)

z=1/2*ln(x^2+y^2+4)Z'x=1/2*1/(x^2+y^2+4)*(2x)=x/(x^2+y^2+4)Z'y=1/2*1/(x^2+y^2+4)*(2y)=y/(x^2+y^2+4)所

设函数y=x^2(cosx+根号下x),求微分dy

y=x^2(cosx+√x),dy=[2x(cosx+√x)+x²(-sinx+1/2*1/√x)]dx=[2xcosx-x²sinx+2x√x+1/2*x√x]dx=[x(2co

求y=sin(e^2x)的微分y'

y'=2e^2xcos(e^2x)把y看成复合函数sint,t=e^m,m=2x.复合函数求导,等于三个分别求导的积

y=x分之1+根号x求函数的微分

y=1/x+√x=x^(-1)+x^(1/2)∴y'=(-1)*x^(-2)+(1/2)*x^(-1/2)=-1/x^2+1/(2√x)