求微分方程dy dx=1 xcosy sin2y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:36:32
方程两边求关x的导数ddx(xy)=(y+xdydx); ddxex+y=ex+y(1+dydx);所以有 (y+xdy
由微分方程dydx=2xy,得dyy=2xdx(y≠0)两边积分得:ln|y|=x2+C1即y=Cex2(C为任意常数)
用点到直线的距离公式可得:|1*cosθ+(-1)*sinθ-2|/√(cos^2θ+sin^2θ)cos^2θ表示cosθ的平方.=|cosθ-sinθ-2|/1=2+sinθ-cosθ当cosθ=
分离变量法dy/y=(1+x)dx,两边积分,得ln|y|=x+x平方/2+C,整理得y=Ce的(x+x平方/2)方
y'/y=1/(1+x^2)两边积分logy=arctanx+Cy=e^(arctanx+C)或者写成Ce^(arctanx)C是任意常数
1-y/x*cos(y/x)+cos(y/x)dy/dx=0令y/x=u,则dy/dx=u+xdu/dx所以1-ucosu+cosu*(u+xdu/dx)=0cosu*xdu/dx=-1cosudu=
xsin(y/x)-ycos(y/x)]dx+xcos(y/x)dy=0②解初值xy'-y=xtany/x,y(1)=π/21.令y/x=t,则方程化为(xsint-xtcost)dx+xtc
函数f(x)只在x=0处没有定义,所以x=0是间断点.x→0时,f(x)=xcos^2(1/x)是无穷小与有界函数乘积的形式,所以f(x)→0所以,x=0是可去间断点
y'=cos(1/x)+x(-sin(1/x))(-1/x^2)=cos(1/x)+1/x*sin(1/x)
∵[xcos(x+y)+sin(x+y)]dx+xcos(x+y)dy=0==>xcos(x+y)dx+xcos(x+y)dy+sin(x+y)dx=0==>xcos(x+y)(dx+dy)+sin(
合并同类项么,很简单的只要你愿意去做左边=cos*x(cos*y+sin*y)+sin*x(cos*y+sin*y)=cos*x+sin*x=1=右边
原式=∫4dx/(2sinxcosx)²=4∫dx/sin²2x=2∫csc²2xd2x=-2cot2x+C
u=xy,y=u/x.y'=(xu'-u)/x^2(xu'-u)'+x^2*y=0xu''+u'-u'+xu=0u''+u=0u=Asinx+Bcosxy=A(sinx)/x+B(cosx)/x.A=
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).
∫cos²xdx=∫cosxdsinx=sinxcosx-∫sinxdcosx=sinxcosx+∫sin²xdx=sinxcosx+∫(1-cos²x)dx=sinxc
dydx要是等式才行吧.如果是的话,这句话就是求这个等式的根,用r表示x.
∫(1/sin²xcos²x)dx=∫(sin2x+cos2x/sin²xcos²x)dx=∫(1/sin²x+1/cos²x)dx=-co
(x-y+1)dy/dx=1得:dy/dx=1/(x-y+1)则:dx/dy=x-y+1(1)x看作函数y看作自变量令z=x-y+1则dz/dy=dx/dy-1因此(1)化:dz/dy+1=z分离变量
原式=0.5∫cos(1+x²)d(x²)=0.5sin(1+x²)+C再问:能给下过程么?3Q再答:这都是可以直接积分的,xdx=0.5d(x²)=0.5d(