求微分方程dy dx=1 xcosy sin2y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:36:32
求由方程xy=ex+y所确定的隐函数的导数dydx

方程两边求关x的导数ddx(xy)=(y+xdydx);     ddxex+y=ex+y(1+dydx);所以有  (y+xdy

求解微分方程dydx

由微分方程dydx=2xy,得dyy=2xdx(y≠0)两边积分得:ln|y|=x2+C1即y=Cex2(C为任意常数)

求点M(1,-1)到直线xcosθ +ysinθ -2=0的距离的最大值

用点到直线的距离公式可得:|1*cosθ+(-1)*sinθ-2|/√(cos^2θ+sin^2θ)cos^2θ表示cosθ的平方.=|cosθ-sinθ-2|/1=2+sinθ-cosθ当cosθ=

求微分方程dy/dx=(1+x)y的通解

分离变量法dy/y=(1+x)dx,两边积分,得ln|y|=x+x平方/2+C,整理得y=Ce的(x+x平方/2)方

求微分方程y'=y/(1+x^2)的通解

y'/y=1/(1+x^2)两边积分logy=arctanx+Cy=e^(arctanx+C)或者写成Ce^(arctanx)C是任意常数

求解微分方程:[x-ycos(y/x)]dx+xcos(y/x)dy=0.

1-y/x*cos(y/x)+cos(y/x)dy/dx=0令y/x=u,则dy/dx=u+xdu/dx所以1-ucosu+cosu*(u+xdu/dx)=0cosu*xdu/dx=-1cosudu=

(2xsin(y/x)-ycos(y/x))dx+(xcos(y/x)+1)dy=0 求y

xsin(y/x)-ycos(y/x)]dx+xcos(y/x)dy=0②解初值xy'-y=xtany/x,y(1)=π/21.令y/x=t,则方程化为(xsint-xtcost)dx+xtc

求间断点f(x)=xcos^2(1/x)并说明间断点的类型.请给出具体过程.

函数f(x)只在x=0处没有定义,所以x=0是间断点.x→0时,f(x)=xcos^2(1/x)是无穷小与有界函数乘积的形式,所以f(x)→0所以,x=0是可去间断点

y=xcos(1/x)

y'=cos(1/x)+x(-sin(1/x))(-1/x^2)=cos(1/x)+1/x*sin(1/x)

求方程[xcos(x+y)+sin(x+y)]dx+xcos(x+y)dy=0的通解,

∵[xcos(x+y)+sin(x+y)]dx+xcos(x+y)dy=0==>xcos(x+y)dx+xcos(x+y)dy+sin(x+y)dx=0==>xcos(x+y)(dx+dy)+sin(

求证 cos*xcos*y + sin*xsin*y + sin*xcos*y + xin*ycos*x = 1

合并同类项么,很简单的只要你愿意去做左边=cos*x(cos*y+sin*y)+sin*x(cos*y+sin*y)=cos*x+sin*x=1=右边

求不定积分(1/sin^2xcos^2x)dx

原式=∫4dx/(2sinxcosx)²=4∫dx/sin²2x=2∫csc²2xd2x=-2cot2x+C

关于【微分方程】的(1)设n=1,u=xy,求微分方程的解.(2)设n=5,求a,b使下式为微分方程的解.

u=xy,y=u/x.y'=(xu'-u)/x^2(xu'-u)'+x^2*y=0xu''+u'-u'+xu=0u''+u=0u=Asinx+Bcosxy=A(sinx)/x+B(cosx)/x.A=

求微分方程dydx+y=e

这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).

求不定积分∫xcos xdx

∫cos²xdx=∫cosxdsinx=sinxcosx-∫sinxdcosx=sinxcosx+∫sin²xdx=sinxcosx+∫(1-cos²x)dx=sinxc

matlab solve函数 xmaxr=solve(dydx,x)

dydx要是等式才行吧.如果是的话,这句话就是求这个等式的根,用r表示x.

∫(1/sin²xcos²x)dx怎么求,

∫(1/sin²xcos²x)dx=∫(sin2x+cos2x/sin²xcos²x)dx=∫(1/sin²x+1/cos²x)dx=-co

求微分方程(x-y+1)y'=1的通解.

(x-y+1)dy/dx=1得:dy/dx=1/(x-y+1)则:dx/dy=x-y+1(1)x看作函数y看作自变量令z=x-y+1则dz/dy=dx/dy-1因此(1)化:dz/dy+1=z分离变量

∫xcos(1+x^2)dx=

原式=0.5∫cos(1+x²)d(x²)=0.5sin(1+x²)+C再问:能给下过程么?3Q再答:这都是可以直接积分的,xdx=0.5d(x²)=0.5d(