求微分方程xdy (x-2y)dx=0的一个解y=y(x),
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:46:56
y=cx+2x²
(x+y)dx+xdy=xdx+(ydx+xdy)=xdx+d(xy)=0即d(xy)=-xdx两端求积分得,xy=-x^2/2+c所以,y=-x/2+c/x
xdy/dx+y=xe^xxy'+y=xe^x(xy)'=xe^x两边对x积分得xy=∫xe^xdx=xe^x-∫e^xdx=xe^x-e^x+C即xy=xe^x-e^x+C
答:xdy/dx+y=cosxxy'+y=cosx(xy)'=cosxxy=sinx+C所以:通解为xy=sinx+C
Ans:y=2x/(x-sinxcosx+C)y=x*dy/dx+y²sin²x-x*dy/dx+y=y²sin²x-(dy/dx)/y²+1/(xy
这是一阶线性微分方程,由x·y′+y=3x两边同除x得:y′+1/x·y=3由一阶线性微分方程公式:y={q(x)·e^∫p(x)dx+C}·e^-∫p(x)dx书上有这公式其中q(x)=3p(x)=
令y=xt,所以有:dy=xdt+tdx;所以原式为:(1+2t)dx+xdt+tdx=0;即为:(1+3t)dx=-xdt;然后再分离变量(这是最基本的方法),求出来之后再把t换掉,就可以了,再问:
xdy-2[y+xy²(1+lnx)]dx=0x·dy/dx-2y=2xy²(1+lnx)、两边除以xy²(1/y²)(dy/dx)-2/(xy)=2(1+ln
xdy+ydx=-sinxdxd(xy)=-sinxdx两边积分:xy=cosx+C
xdy+(x^2siny-y)dx=0变形得dy/dx=xsiny-y/x这个方程好象没有常规解法.
[y+(x^2+y^2)^1/2]dx-xdy=0>dy/dx=y/x+(1+(y/x)^2)^(1/2)设z=y/x,则dy/dx=z+xdz/dx>z+xdz/dx=z+(1+z^2)^(1/2)
设y=xu则y'=u+xu'代入原方程得:[xu-x(x^2+u^2x^2)]-x(u+xu')=0即x+u^2x+u'=0-xdx=du/(1+u^2)积分:-x^2/2+C=arctanuu=ta
(2x+y)dx=-xdy2x+y+xdy/dx=0dy/dx=-(2+y/x)设u=y/x,齐次方程dy/dx=u+xdu/dxu+xdu/dx=-(2+u)xdu/dx=-2(1+u)du/(-2
xd+ydx=x²dxd(xy)=d(x³/3)积分得xy=x³/3+Cx=1时y=4/3则C=1,特解是xy=x³/3+C
xdy-ydx=x^2*(xdy-ydx)/x^2=x^2*d(y/x)左右2边都除以x^2即变为:d(y/x)=1/(x*lnx)dxy/x=ln(lnx)+Cy=xln(lnx)+Cx
如图答案是正确的,sinarctan(y/x)可以化成跟标准答案亦一样的形式,他们因为有积分常数C控制着呢,样子有许多种,你可以C+5,都可以,arctanx和arcsinx等反正切反正弦都可以相互转
ydx-xdy+(y^2)xdx=0y-xdy/dx=-(y^2)x(y-xy')/y^2=-x(x/y)'=-x两边积分得x/y=-x^2/2+C
xdy-ydx=-x^2cosxdx(xdy-ydx)/x^2=-cosxdxd(y/x)=-cosxdx两边积分:y/x=-sinx+Cy=-xsinx+Cx
(y-x3)dx-2xdy=0①若x=0,或y=0,微分方程(y-x3)dx-2xdy=0恒成立;②若x≠0,y≠0,则有:(y−x3)dx−2xdyy3=01y2dx−2xy3dy−x3y3dx=0