求微分方程y-2y-3y=3x 1的一个特征解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:15:48
几道微积分题目!1.求微分方程y'=y ln y的通解.2.求微分方程3e^x tan y dx+(2-e^x)(sec

y'=ylnydy/(ylny)=dx两边积分得lnlny=x+C分离变量得3e^x/(2-e^x)dx=-(secy)^2/tanydy两边积分得-3ln(2-e^x)=-lntany+C分离变量得

求微分方程通解y''+3y'+2y=3xe^-x

y''+3y'+2y=3xe^(-x)特征方程r^2+3r+2=0的解为r1=-1,r2=-2因此齐次方程y''+3y'+2y=0的通解为y1=Ae^(-x)+Be^(-2x)用常数变易法求特解,设y

高数题 求微分方程通解.y''-3y'+2y=e^x(1+e^2x)

特征方程r²-3r+2=0得r=1,2齐次方程通解y1=C1e^x+C2e^2x方程右边为e^x+e^3x设特解为y*=axe^x+be^3x则y*'=a(1+x)e^x+3be^3xy*"

求微分方程Y''+3y'+2y=3e^2x

Y''+3y'+2y=0的特征根:-1,-2由于右端3e^2x中,指数2不是根,设特解y=Ae^2x代入原方程:A=1/4y=C1e^(-2x)+C2e^(-x)+(1/4)e^2x

求微分方程通解dy/dx=(x-2y+1)/(2x+3y+2)

这是典型的可化为齐次方程的方程dy/dx=(x-2y+1)/(2x+3y+2)=((x+1)-2y)/(2(x+1)-3y)设u=y/(x+1),y=u(x+1),y'=u'(x+1)+uu'(x+1

求微分方程y"+3y'+2y=xe^(-x)的通解

你这是一个二阶常微分方程特征方程a^2+3a+2=0解得特征根a=-1a=-2所以齐次方程y"+3y'+2y=0的通解~y=C1*e^(-x)+C2*e^(-2x)C1,C2为任意常数应为-1为特征根

求微分方程y’‘+3y'=2y=3xe^(-x)的通解

y''+3y'+2y=3xe^(-x)y''+3y'+2y=0特征方程r^2+3r+2=0r1=-1,r2=-2y=C1e^(-x)+C2e^(-2x)设y=C1(x)e^(-x)C1''+3C1'=

求微分方程y''-3y'+2y=2xe^x的通解,但是细节看不懂

这是二阶常系数非齐次线性方程解法是先求出齐次方程的通解,就是C1e^x+C2e^x再求出一特解,齐次方程的通解+特解就是非齐次方程得解求特解的方法就是根据原方程等式右边的式子和齐次方程特征根的情况设定

求微分方程y”-3y’+2y=5

1.齐次通解Y特征方程为:r²-3r+2=0(r-1)(r-2)=0r=1或r=2Y=C1e^x+C2e^2x2.非齐次特解y*设y*=ay*'=y*''=02a=5a=5/2所以通解为:y

求微分方程y''-3y'+2y=x(e^x)的通解

通解为:Ce^x+De^(2x)-x(x/2+1)e^x其中C,D为任意实数由题意知特征方程为:λ²-3λ²+2=0,故λ=1或2故可设特解为:x(ax+b)e^x将其代入原方程解

求微分方程y''-3y'+2y=xe^x+1的通解

y=C1e^x+C2e^(2x)+1/2-x(x/2+1)e^x.

求微分方程y"+3y+2y=e的x次方的通解

题目应该是y"+3y'+2y=e^x吧?特征方程为r^2+3r+2=0,得r=-1,-2即齐次方程的通解y1=C1e^(-x)+C2e^(-2x)设特解y*=ae^x,代入方程得:ae^x+3ae^x

求微分方程y''-3y'+2y=e^x的解.

本题r=1,对应二阶齐次特征方程λ^2-3λ+2=0特征根:λ1=1,λ2=2对应齐次的通解为:Y*=c1e^x+c2e^(2x)(c1、c2为常数)r=1是特征方程的一个解.设所求特解为y=cxe^

求微分方程通解:dy/dx=(x-y+1)/(x+y^2+3)

(x+y^2+3)dy=(x-y+1)dx或:xdy+ydx+(y^2+3)dy-(x+1)dx=d(xy)+(y^2+3)dy-(x+1)dx=0通解为:xy+y^3/3+3y-x^2/2-x=C

求微分方程 y'' - 2y' - 3y = 3x + 1 的通解

-2A-3Ax-3B=3x+1由于x是任意的(事实上x不是常数,而是变量),故必须有等号左右两边x的系数相等:-3Ax=3x,所以A=-1;这样,不管x怎样变化,左右两边才总是相等的.其余部分也相应相

求微分方程y''-y'+2y=e^X通解

特征方程R^2-R+2=0,特征方程的解为R1=-1,R2=2;微分方程特解为C1e^(-x)+C2e^(2x);特解为1/2e^x;通解为y=C1e^(-x)+C2e^(2x)+1/2e^x;C1,

求微分方程y''+5y'+4y=3-2x的通解

^2+5r+4=0r1=-1r2=-4齐次通解为c1e^(-x)+c2e^(-4)特解为-1/2x-11/2微分方程y''+5y'+4y=3-2x的通解c1e^(-x)+c2e^(-4)-1/2x-1

y''+5y'+4y=3x^2+1 求微分方程的通解

由题目得出特征方程r^2+5r+4=0,r1=-1,r2=-4,方程解为y=c1e^(-x)+c2e^(-4x);a=2不是特征根,设y1=Ax^2+Bx+c,y'=2Ax+B,y''=2A,带入原方

求微分方程y''-2y'-3y=e^2x的通解

y''-2y'-3y=e^(2x)齐次部分y''-2y'-3y=0对应的特征方程:x^2-2x-3=0=>x=-1或者x=3.基础解系e^(-x),e^(3x).y''-2y'-3y=e^(2x)有特