求心形线r=a(1 cos)与r=3acos 所围成公共部分图形的面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:49:31
解答如下: 再问:你这是用二重积分的方法做的,我是问像我问题里的那种方法那个式子是怎么回事再答:补充如下:
(A)=n时r(A*)=nr(A)=n-1时r(A*)=1r(A)
心形曲线r=a(1+cosb)形状是绕了一圈他的定义域是[0,2π]但是他关于x轴对称我们求面积的话,只要求上半部分就好了因为下面的面积和上面一样所以我们只做[0,π]上的面积,再前面乘以那个2就行了
微积分dl=sqrt((dx)^2+(dy)^2)=(sqrt(1+(y')^2)dx对dl积分即(积分符)(sqrt(1+(y')^2)dx)
心形曲线r=a(1+cosb)形状是绕了一圈他的定义域是[0,2π]但是他关于x轴对称我们求面积的话,只要求上半部分就好了因为下面的面积和上面一样所以我们只做[0,π]上的面积,再前面乘以那个2就行了
看你的输入,应该是极坐标方程,θ表示极角.
可以这么来:x=rcosθ=a(1+cosθ)cosθy=rsinθ=a(1+cosθ)sinθ(x,y)为坐标,θ为参数.
希望对你有所帮助
这是一组极坐标方程.r=3cosθ是以(1.5,0)为圆心,3为直径的圆;r=1+cosθ是帕斯卡蜗线的一种;r=√2sinθ是以(0,√2/2)为圆心,√2为直径的圆;r^2=cos2θ是双纽线的一
∵a+b=(2,0)∴sinΘ+cosΘ=0①即|sinΘ|=|cosΘ|且sinΘ=-cosΘ将①等式两边同时平方sin2Θ+2sinΘcosΘ+cos2Θ=0∵sin2Θ+cos2Θ=1∴2sin
极轴就是θ=0的射线,或者不准确的讲就是X轴正半轴.显然,心形线关于极轴对称,取其上半部分图形(0
考虑半个心形线(θ属于0到180度),每一段弧元(ds=sqrt(dr^2+(rdθ)^2))绕极轴转成一个梯形环面元,面积等于2πR*ds,R是该弧到极轴的距离:R=rsinθ.所以立体的侧面积就是
=1+cosar^2=r+rcosa即有x^2+y^2=根号(x^2+y^2)+x
联立两个方程r=3cosθr=1+cosθ当两个相等时,3cosθ=1+cosθ即2cosθ=1,θ=π/3和-π/3先对心形线在-π/3到π/3的面积求出来,因为上下对称,所以面积是上面一块的两倍S
3/2乘π乘a^2用极坐标来做再问:求具体过程再答:关于极轴对称那么整个面积S=2s1=2X积分号(下线0)(上限π)『1/2乘[a(1+cosθ)]^2dθ』很简单的积分自己脱了括号算下就出来了再问
arccosx是指反三角的意思的.就是cosx的反函数.希望对你有用,有问题可以再找我
心脏线和圆围成的区域有几部分,公共部分,图形关于X轴对称,算一半,加倍即可.在[0,π/2]之间,是圆围成的面积,在[π/2,π]之间,是心脏线围成的面积.,再问:大神,能帮我做个图吗?我真心想不出来
这应该用定积分来求.根据公式,心型线的长度设为L,那么L=∫(r^2+r'^2)^(1/2)dθ其中,r'表示r的导数,积分上限2π,下限为0L=∫{[a(1+cosθ)]^2+(asinθ)^2}^
再问:r=a(1-cosθ)或r=a(1+cosθ)(a>0)//含义是什么意思呀大哥能心细否?再答:极坐标方程水平方向:r=a(1-cosθ)或r=a(1+cosθ)(a>0)垂直方向:r=a(1-
∵r=a(1+cosθ)∴r′(θ)=-asinθ∴ds=r2(θ)+r′2(θ)dθ=2a2(1+cosθ)dθ=2a1+cosθ2dθ=2a|cosθ2|dθ∴心形线的全长为:s=2a∫2π0|c