求极限x-sinx 根号1 x^3-1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:38:24
求极限lim.tanx-sinx / x^3

tanx-sinx/x^3=[sinx(1-cosx)]/(x^3*cosx)=(sinx/x)*(1-cosx)/x^2(当x趋于0时,cosx的极限是1)=1*1/2(1-cosx与1/2*x^2

x趋近于零,求根号1+tanx-根号1-sinx的极限

当x趋于0时,tanx~x,sinx~x,√(1+x)-1~x/2,√(1-x)-1~(-x)/2lim[√(1+tanx)-√(1-sinx)]=lim[√(1+x)-√(1-x)]=lim[√(1

求极限,x→0 时,(根号下(1+tanx)-根号下(1+sinx))/x^3

用无穷小的代换(根号下(1+tanx)-根号下(1+sinx))/x^3=[1/2tanx-1/2sinx]/x^3=1/2(tanx-sinx)/x^3=1/2*1/2x^3/x^3=1/4用到的无

求极限lim(x→0)(根号下1+tanx减去根号下1+sinx)/sin^3x

分子分母同时乘以(根号下1+tanx加根号下1+sinx),则所求=lim(x→0)(tanx-sinx)/[sin^3x(根号下1+tanx加根号下1+sinx)]=lim(x→0)(tanx-si

求极限limx趋向于0 {根号下(1+tanx)-根号下(1+sinx)}/ln(1+x的3次方)

lim(x→0)[√(1+tanx)-√(1+sinx)]/ln(1+x^3)=lim(x→0)[√(1+tanx)-√(1+sinx)]/(x^3)=lim(x→0)[√(1+tanx)-√(1+s

根号(1+tanx)-根号(sinx+1)/x^3求趋于零极限

lim(x→0)[√(1+tanx)-√(sinx+1)]/x^3(分子有理化)=lim(x→0)[√(1+tanx)-√(sinx+1)][√(1+tanx)+√(sinx+1)]/{[√(1+ta

求极限 x->0 根号(1+sinx)-根号(1-sinx)/x 求

分子有理化有原式=lim2sinx/(x(根号(1+sinx)+根号(1-sinx)))=1/2*lim2sinx/x=1/2*2=1

求极限 lim(cosx+sinx)^1/x

一下都省略极限过程x→0设A=lim(cosx+sinx)^1/x,则lnA=limln(cosx+sinx)/x=lim[ln(cosx+sinx)]'/x'【L'Hospital法则】=lim(c

求极限:根号下[(x^2+1)-根号下(x^2-1)]sinx

√(x²+1)-√(x²-1)=[√(x²+1)-√(x²-1)][√(x²+1)+√(x²-1)]/[√(x²+1)+√(x&s

求(x-sinx)/(x+sinx)的极限

依题它是趋向于0.又式子是0/0型,所以原式=(1-cosx)/(1+cosx)=(x²/2)/2=x/2=0再问:������再答:哪里看不懂再问:�ǵ�1-cosx���Dz�再答:x趋于

求极限 根号(1+tanx)-根号(1+sinx) x趋向于0

分子有理化即可即分子分母同时乘以:根号(1+tanx)+根号(1+sinx)有理化之后分子趋近于0,分母趋近于2,极限为0其实你是不是题搞错了其实这题直接根号(1+tanx)趋近于1,根号(1+sin

当x趋向90度时,求[(sinx)^3-2(sinx)^2+1]/[sinx-1]的极限.

lim(x-->90°)[(sinx)^3-2(sinx)^2+1]/[sinx-1](0/0型,用洛必达法则)=lim(x-->90°)[3cosx(sinx)^2-4cosx*sinx]/cosx

求极限lim(x→0)x-sinx/根号下(1-xˆ3)-1 >.

分析下知道这是一个(0/0)型的用洛必达法则lim(x→0)x-sinx/根号下(1-xˆ3)-1=lim(x→0)(1-cosx)/[(-3x^2)/2倍根号下(1-xˆ3)]然

求极限x趋向0,(x-sinx)/[√(1+x^3))-1]中怎么去掉根号和详细步骤

1.这里用极限的乘法法则就行了.以下极限都是对x→0:易证lim√(1+x³)=1,故lim(1-cos(x))/(3x²/(2√(1+x³)))=2/3·lim(1-c

(1+3x)^(2/sinx) x趋向0 求极限

极限等于(1+3X)^1/3X*6X/sinX=e^6X/sinX=e^1/6

求 [根号(1+tanx)-根号(1+sinx)]/[xln(1+x)-x平方]极限 x趋向0

lim(x→0)[√(1+tanx)-√(1+sinx)]/[x*ln(1+x)-x^2]=lim(x→0)[tanx-sinx]/[x*ln(1+x)-x^2][√(1+tanx)+√(1+sinx

求极限( 1/x)-1/sinx

lim(x-->0)(1/x)-1/sinx=lim(x-->0)(sinx-x)/(xsinx)=lim(x-->0)(sinx-x)/(x²)=lim(x-->0)(cosx-1)/(2