求解对于任意自然数N,(a*N)^2 b*N c是素数是假命题
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:32:58
sn=n*(1+n)/2=(n+n^2)/2再问:简单点说快快快再答:S=1+2+3+。。。。。。。。。。+nS=n+n-1+n-2+。。。。。。。。+1上加下,1+n共有n对1+n但是我们多加了s所
n(n+7)-(n-3)·(n-2)展开=n方+7n-n方+5n-6=12n-612能被6整除所以12n(n为自然数)均能被6整除所以12n-6能被6整除或继续展开12n-6=6(2n-1)能被6整除
(n+11)2-n2=(n+11-n)(n+11+n)=11(2n+11).∴能被11整除.
当然是了.因为n(n+3)-(n-4)(n-5)=12n-20=4(3n-5)再问:需要写∵和∴的这道题再答:∵n(n+3)-(n-4)(n-5)=12n-20=4(3n-5)∴对于任意自然数n,代数
n必须不为0才行由于2^(n+4)-2^n=16*2^n-2^n=15*(2^n)n不为0时,2^n必为2的倍数,所以15*(2^n)必为30倍数证毕
原式=n^2+7n-n^2+5n-6=12n-6=6(2n-1)能被6整除
11.1211.1=11.1100.0+111.1=(111.1)*(111.1)比如121=11*11所以它是合数
a(n+1)=√[bn*b(n+1)]2bn=an+an+12bn=√[bn*b(n-1)]+√[bn*b(n+1)]2√bn=√b(n-1)+√b(n+1)所以数列{√bn}为等差数列
n(n+6)-(n-1)(n+7)=n^2+6n-(n^2+6n-7)=7故代数式n(n+6)-(n-1)(n+7)的值能被7整除
另m=n~2(n的平方)mn+1=n^3+1=(n+1)*(n^2+n+1)(n+1)(n^2+n+1)均能被mn+1整除故mn+1是个合数
选D1999的n次方-1能被1998整除.再答:二十年教学经验,专业值得信赖!如果你认可我的回答,敬请及时采纳,在右上角点击“评价”,然后就可以选择“满意,问题已经完美解决”了。再问:Way?再问:W
(n+2)^2-(n-2)^2=8n所以可以
原式=2^n(2^4-1)=2^n*15因为15是5的倍数所以能被5整除
前面是3^(n+2)吧3^n+2-2^n(4+1)+3^n=-10*2^n-1+3^n(9+1)=-10*2^n-1+10*3^n=10(3^n-2^n-1)
证明:n(n+7)-(n+3)(n-2)=n^2+7n-n^2-n+6=6n+6=6(n+1)因此代数式n(n+7)-(n+3)(n-2)无论对任意自然数n都能被6整除
(n+5)-(n+2)(n+3)=6n在这里没有意义应该是“n*(n+5)-(n-3)*(n+2)”可以被6整除...n*(n+5)-(n-3)*(n+2)=n^2+5n-(n^2-n-6)=6n+6
n(n+7)-n(n-5)+6展开得到n²+7n-n²+5n+6=12n+6=(2n+1)*6很显然可以判定结果!
n(n+7)-(n-3)(n-2)=n^2+7n-n^2+5n-6=12n-6=6(2n-1)
化简后得12n-6=6*(2n-1),即可证明能被6整除