求证方阵的k次方等于0的方阵可逆
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:26:41
设a是A的特征值,则对任意多项式f,若f(A)=0则f(a)=0(特征值都是最小多项式的根,最小多项式整除任意化零多项式,所以特征值是任意化零多项式的根).现在f(A)=A^m=0,所以f(a)=a^
证明:设λ是A的特征值则λ^k是A^k的特征值(这是定理)而A^k=0,零矩阵的特征值只能是0所以λ^k=0所以λ=0即A的特征值一定为0.
A.B可交换AB=BA(AB)^2=AB*AB=A(BA)B=A(AB)B=A^2B^2假设k-1时成立,(AB)^(k-1)=A^(k-1)B^(k-1)(AB)^k=(AB)^(k-1)AB=A^
这是方阵行列式的基本性质kA是A中所有元素都乘以k取行列式|kA|:每一行都有一个k公因子,根据行列式的性质,每行提出一个k所以:|kA|=k^n|A|
注意|A|是一个数.利用公式|kA|=k^n|A|,这里k=|A|,n=3
用哈密顿凯莱定理,特征多项式的常数项是方阵的行列式,再由伟达定理可知,特征值的积=特征多项式的常数项=方阵的行列式,还有不是所有的矩阵都可相似于对角矩阵的
因为A^k=0所以(E-A)(E+A+A^2+...+A^(k-1))=E+A+A^2+...+A^(k-1)-A-A^2-...-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-A)^
这个书上有对任意的方阵A,B|AB|=|A||B|对于A的k次方,可以由归内法证明.k=1时,有|A|=|A|是显然的设k=n时成立,即|A^n|=|A|^n那么当k=n+1时|A^(n+1)|=|A
不对.相似矩阵有相同的秩A的秩等于那个对角矩阵主对角线上非零元素的个数
A²+3A-E=0A(A+3E)=E所以(A+3E)^(-1)=A
说实话我没见过这样形式的行列式,但是我肯定||A||并不是代表A的行列式的行列式,行列式已经是一个值了,不能再求其行列式了,它的意义应该是||A|E|,即单位矩阵乘|A|的行列式,|A|E表示的矩阵是
Ax=0只有零解所以|A|不等于0而|A^k|=|A|^k不等于零所以A^kx=0只有唯一解,就是零解
你这个问题的叙述不好,没有指定矩阵元素的范围.如果是复数域上的矩阵,那么由于复数一定是完全平方数,这个问题没什么意义.如果是实数域上的斜对称矩阵,那么它的特征值必定在虚轴上并且成对出现,所以行列式是非
证明:设A有特征值S,则A^k的特征值为S^k.(在线性代数的习题里有此类定理).由A^k=O可知:S^k=0(零矩阵的特征值只有0).故S=0,可知I-A的特征值只有1,故|I-A|=1(对应的行列
充要条件:充要条件是行列式不等于0或者特征值都不等于0或者满秩一些充分条件:若AB=E则A,B都可逆
设a是A的特征值则a^k是A^k的特征值因为A^k=0,而零矩阵的特征值只能是0所以a^k=0所以a=0.故A的特征值为0,...,0所以A+E的特征值为1,...,1所以|A+E|=1故A+E可逆.
lz知道Jordan变换么.存在可逆矩阵P,使得A=p-1Jp,其中J是Jordan矩阵.则A^2=p-1J^2p.问题的关键就是这里J的形式.推理如下:A^k=0,所以A的特征值全为0.又r(A)=
1-9组成16的方阵似乎不可能吧能组成16的只有169,178,259,268,349,358,367和457八组数要组成方阵的话必须有一个数出现了4次放在最中间,四个数出现了三次放在四个角上,每个边
A^k=0,E-A^k=E,展开,(E-A)*(E+A+A平方+A立方+...+A的k-1次方)=E.得证了赛.(后面是不是你打错了,B是咋个来的?)