f(x)=f(x-3a) f(x 3a),求证周期为6a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:54:29
把X换成1/X得:f(1/x)+2f(x)=3/x(1)(1)×2-原式得:f(x)=(2/x)-x.
f(x)+f(x+a)+f(x+2a)+f(x+3a)+f(x+4a)=f(x)f(x+a)f(x+2a)f(x+3a)f(x+4a)令x=x+af(x+a)+f(x+2a)+f(x+3a)+f(x+
变量密度函数还没有学到,抱歉
2f(x)+f(1/x)=3x(1)所以2f(1/x)+f(x)=3/x(2)(1)(2)连立2[3x-2f(x)]+f(x)=3/x-3f(x)=3/x-6xf(x)=2x-1/x
首先3-a>0a1最后在分界点处有(3-a)*1-a≤loga1=0所以a≥1.5综上1.5≤a
f(x)=(3a-1)x+4a,x
把1/x当作x带入上式得2f(1/x)+f(x)=3/x,与2f(x)+f(1/x)=3x联立得f(x)=-1/x+2x,定义域x不等于0
1、函数f(x)=3x^2+2x故f(2)=3*4+2*2=16,f(-2)=3*4-2*2=8f(2)+f(-2)=16+8=242、f(a)=3a^2+2a,f(-a)=3a^2-2a所以f(a)
目的就是找找出f(x)=f(x+T)就可以了所以f(x)=f(2a-x)=-f(x-2a)=-f(2a-(x-2a))=-f(4a-x)=f(x-4a)固周期是4a
f(x)=3x³+2xf(a)=3a³+2af(-a)=3(-a)³+2(-a)=-3a³-2af(a)+f(-a)=3a³+2a+(-3a³
1、f(x+a)=f(x-a),则f(x)的周期为T=2a2、f(x+a)=f(a-x),则f(x)的对称轴为x=a3、f(x+a)=-f(x),则f(x)的周期为T=2aps:奉送一个:4、f(x+
1.f(2)=3*2^3+2*2=24+4=28f(-2)=-28f(2)+f(-2)=02.f(a)=3a^3+2af(-a)=-3a^3-2af(a)+f(-a)=0不知道你学没学奇函数因为是奇函
令x=a,得2f(a)+f(-a)=-3a+1...①令x=-a,得2f(-a)+f(a)=3a+1.②由①-②得:f(a)-f(-a)=-6a.③由①+③得:3f(a)=-9a+1f(a)=-3a+
f(12)=f(3+9)=f(3)+f(9)=f(3)+f(3)+f(3)+f(3)=4a
f(x)+f(x+a)+f(x+2a)+f(x+3a)+f(x+4a)=f(x)f(x+a)f(x+2a)f(x+3a)f(x+4a)令x=x+af(x+a)+f(x+2a)+f(x+3a)+f(x+
f'(a)是先对原函数进行求导后再代a值f'(a)=4a+3[f(a)]'是复合函数求导,你也可以认为把a值代进去,然后再求导;把a值代进去f(a)就是一个常数,那么[f(a)]'=0
∵f(x+2)>=f(x)+2,∴f(x+3)≥f(x+1)+2.又∵f(x+3)≤f(x)+3,∴f(x+1)+2≤f(x+3)≤f(x)+3,即f(x+1)+2≤f(x)+3,∴f(x)+1≥f(
第一个等式说明函数对称轴是2因为f(0)