f(x)=ln(1 x2)的n阶导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:00:28
函数f(x)=ln(x+根号x2+1)的奇偶性是

奇函数则定义域关于原点对称且对定义域内的任一x,都有f(-x)=-f(x)比如f(x)=x3定义域是R,关于原点对称且(-x)3=-x3所以f(-x)=-f(x)所以就是奇函数偶函数则定义域关于原点对

设函数f(x)=x2+b ln(x+1) ,其中b≠0.是否存在最小的正整数N,使得当n>=N时,不等式ln[(n+1)

ln[(n+1)/n]>(n-1)/n3中的‘n3’是啥意思?n的三次方应写作n^3令1/n=t那么左边=ln(t+1)右边=t^2-t^3令g(t)=ln(t+1)-(t^2-t^3),t>0所以g

因为函数f(x)=ln(x2+x+1-x2-x+1)=ln((x+12)2+(0

因为函数f(x)=ln(x2+x+1-x2-x+1)=ln((x+12)2+(0-32)2-(x-12)2+(0-32)2),真数的值可看作在x轴上一点P(x,0)到点(-12,32)与点(12,32

f(x)=(x^2)*[ln(1+x)]的n阶麦克劳林展开是什么?

∵ln(1+x)=∑(-1)^(n-1)x^(n+1)/n∴f(x)=∑(-1)^(n-1)x^(n+3)/n再问:谢谢!可是我的课本讲ln(1+x)的麦克劳林展开式是:x-(x^2)/2+(x^3)

f(x)=ln(1/1-x),求f(0)的n阶导数

∵f′(x)=-1/(1-x)f′′(x)=-1!/(1-x)²f′′′(x)=-2!/(1-x)³.f^(n)(x)=-(n-1)!/(1-x)^n,(f^(n)(x)表示f(x

函数f x=ln(x2-x-2)的导数

f'(x)=(2x-1)/(x²-x-2)再问:那单调递增区间呢?再答:x²-x-2=(x-2)(x+1)=(x-1/2)²-9/4定义域为x>2,或x2

求函数f(x)=ln(x+根号下1+x2)的定义域

定义域是R把根号下1+x2的绝对值大于X的绝对值同时根号下1+x2肯定是正的所以ln后面的肯定大于0再问:x+根号下1+x2>0怎么解再答:把x移到右面去两边平方消去x2得到1>0所以解集是R~

f(x)=ln(x+1)-x2-x 1,求函数的单调区间

先求定义域,再求导,导数大于零的x的解集是增区间,导数小于零的x的解集是减区间

f(x)=x-1/x+2+ln(x2+1)的导函数

f(x)=x-1/x+2+ln(x2+1)f'(x)=1+1/x^2+2x/(x^2+1)

函数f(x)=1/ln(x*2)*√4*x2;的定义域

要使函数f(x)=1/ln(x*2)*√4*x2有意义必须有:ln(x*2)≠0x²≠0,2x>0,2x≠1解得,函数f(x)=1/ln(x*2)*√4*x2;的定义域为:x>0且x≠1/2

求函数f(x)=x^2ln(1+x)在x=0处的n阶导数f(n)(0)(n>=3)

你说的正确,求f(x)的n阶导数时需要知道泰勒展开的n次项的系数,因为前面有x^2,后面就展开到n-2次以凑出x^n.另外(-1)^(n-3)=(-1)^(n-1),两写法没什么不同.这个题也可以用求

求函数f(x)=ln(1-x2)的n阶导数

f(x)=ln(1-x2)=ln(1+x)+ln(1-x)f'(x)=1/(1+x)+1/(1-x)f''(x)=-1/(1+x)^2+1/(1-x)^2f'''(x)=2/(1+x)^3+2/(1-

求y=[ln(1+x2)]/x的N阶导数

函数变形为xy=ln(1+x^2),隐函数求一阶导数,将右边的分母乘到左边,整理,然后用莱布尼兹公式求n-1阶导数即可.太繁了,就不写了.另,刚才最后一项是x^2.不过解法一样.

求y=ln(1+x2)/x2的N阶导数

后一个x^2在对数外面吗?[ln(1+x2)]/x2

f(x)=ln(1+x),求n阶导数

f'(x)=1/(1+x)f''(x)=-1/(1+x)²……f(n)(x)=(-1)^(n+1)[(n-1)!/(1+x)^n]

函数f(x)=x-ln(x+1+x2). 求导的***详细***过程

f'(x)=1-[x+√(1+x^2)]'/(x+√(1+x^2)]=1-(1+2x/[2√(1+x^2)])/[x+√(1+x^2)]=1-[1+x/√(1+x^2)]/[x+√(1+x^2)]=1

f(x)=ln((√(1+x2))-x)的单调性,

答:f(x)=ln[√(1+x²)-x]设g(x)=√(1+x²)-x求导得:g'(x)=x/√(1+x²)-1再问:我是高一学生,用高中的知识点解决一下,中间变形的具体